Méthode formelle (informatique)En informatique, les méthodes formelles sont des techniques permettant de raisonner rigoureusement, à l'aide de logique mathématique, sur un programme informatique ou du matériel électronique numérique, afin de démontrer leur validité par rapport à une certaine spécification. Elles reposent sur les sémantiques des programmes, c'est-à-dire sur des descriptions mathématiques formelles du sens d'un programme donné par son code source (ou, parfois, son code objet).
Programmation procéduraleEn informatique, la programmation procédurale est un paradigme qui se fonde sur le concept d'appel procédural. Une procédure, aussi appelée routine, sous-routine ou fonction (à ne pas confondre avec les fonctions de la programmation fonctionnelle reposant sur des fonctions mathématiques), contient simplement une série d'étapes à réaliser. N'importe quelle procédure peut être appelée à n'importe quelle étape de l'exécution du programme, y compris à l'intérieur d'autres procédures, voire dans la procédure elle-même (récursivité).
Formal specificationIn computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.
Programmation impérativeEn informatique, la programmation impérative est un paradigme de programmation qui décrit les opérations en séquences d'instructions exécutées par l'ordinateur pour modifier l'état du programme. Ce type de programmation est le plus répandu parmi l'ensemble des langages de programmation existants, et se différencie de la programmation déclarative (dont la programmation logique ou encore la programmation fonctionnelle sont des sous-ensembles).
Système de calcul formelUn système de calcul formel (computer algebra system ou CAS en anglais) est un logiciel qui facilite le calcul symbolique. La partie principale de ce système est la manipulation des expressions mathématiques sous leur forme symbolique. Les expressions peuvent être : des polynômes avec de multiples variables ; des fonctions (fonctions trigonométriques, exponentielle, etc.) ; des fonctions spéciales (gamma, zêta, erf, Bessel, etc.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.
Programmation génétiqueLa programmation génétique est une méthode automatique inspirée par le mécanisme de la sélection naturelle tel qu'il a été établi par Charles Darwin pour expliquer l'adaptation plus ou moins optimale des organismes à leur milieu. Elle a pour but de trouver par approximations successives des programmes répondant au mieux à une tâche donnée. On nomme programmation génétique une technique permettant à un programme informatique d'apprendre, par un algorithme évolutionniste, à optimiser peu à peu une population d'autres programmes pour augmenter leur degré d'adaptation (fitness) à réaliser une tâche demandée par un utilisateur.
Fonction récursiveEn informatique et en mathématiques, le terme fonction récursive ou fonction calculable désigne la classe de fonctions dont les valeurs peuvent être calculées à partir de leurs paramètres par un processus mécanique fini. En fait, cela fait référence à deux concepts liés, mais distincts. En théorie de la calculabilité, la classe des fonctions récursives est une classe plus générale que celle des fonctions récursives primitives, mais plus restreinte que celle des fonctions semi-calculables (ou partielles récursives).
Fonction récursive primitiveEn théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .
Continuation (informatique)En informatique, la continuation d'un système est son futur, c'est-à-dire la suite des instructions qu'il lui reste à exécuter à un moment précis. C'est un point de vue pour décrire l'état de la machine. Dans certains langages de programmation, les continuations peuvent être manipulées explicitement en tant qu'objets du langage à part entière : on peut stocker la continuation courante dans une variable que l'on peut donc manipuler en tant que telle ; puis plus loin, on peut restaurer la continuation, ce qui a pour effet de dérouter l'exécution du programme actuel vers le futur que l'on avait enregistré.