DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Détection de visagevignette|Détection de visage par la méthode de Viola et Jones. La détection de visage est un domaine de la vision par ordinateur consistant à détecter un visage humain dans une . C'est un cas spécifique de détection d'objet, où l'on cherche à détecter la présence et la localisation précise d'un ou plusieurs visages dans une image. C'est l'un des domaines de la vision par ordinateur parmi les plus étudiés, avec de très nombreuses publications, brevets, et de conférences spécialisées.
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Langage de modélisationUn langage de modélisation est un langage artificiel qui peut être utilisé pour exprimer de l'information ou de la connaissance ou des systèmes dans une structure qui est définie par un ensemble cohérent de règles. Les règles sont utilisées pour l'interprétation de la signification des composants dans la structure. Un langage de modélisation peut être graphique ou textuel.
Catastrophic interferenceCatastrophic interference, also known as catastrophic forgetting, is the tendency of an artificial neural network to abruptly and drastically forget previously learned information upon learning new information. Neural networks are an important part of the network approach and connectionist approach to cognitive science. With these networks, human capabilities such as memory and learning can be modeled using computer simulations. Catastrophic interference is an important issue to consider when creating connectionist models of memory.
UML (informatique)Le Langage de Modélisation Unifié, de l'anglais Unified Modeling Language (UML), est un langage de modélisation graphique à base de pictogrammes conçu comme une méthode normalisée de visualisation dans les domaines du développement logiciel et en conception orientée objet. L'UML est une synthèse de langages de modélisation objet antérieurs : Booch, OMT, OOSE. Principalement issu des travaux de Grady Booch, James Rumbaugh et Ivar Jacobson, UML est à présent un standard adopté par l'Object Management Group (OMG).
Jeu de donnéesvignette|Représentation du jeu de données Iris sur ses quatre dimensions|420x420px Un jeu de données (en anglais dataset ou data set) est un ensemble de valeurs « organisées » ou « contextualisées » (alias « données »), où chaque valeur est associée à une variable (ou attribut) et à une observation. Une variable décrit l'ensemble des valeurs décrivant le même attribut et une observation contient l'ensemble des valeurs décrivant les attributs d'une unité (ou individu statistique).
Apprentissage de métriquesLa métrique, aussi appelée distance ou similarité, permet de mesurer le degré de parenté de deux éléments d'un même ensemble. Elle est utilisée dans le domaine de l'apprentissage dans des applications de classification ou de régression. La qualité de ces métriques est primordiale pour ces applications, d'où l'existence de méthodes d'apprentissage de distances. Ces méthodes se divisent en plusieurs catégories : supervisées ou non-supervisées selon les données mises à disposition.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.