Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Quantum networkQuantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
Code quantiqueLes codes quantiques sont l'équivalent quantique des codes correcteurs. La théorie des codes quantiques est donc une branche de l'information quantique qui s'applique à protéger l'information quantique des effets de la décohérence. La correction d'erreur quantique est un élément essentiel du calcul tolérant aux fautes qui doit gérer non seulement les erreurs dans l'information stockée, mais aussi dans l'application des portes quantiques, la préparation de nouveaux états ainsi que dans les opérations de mesure.
Information quantiqueLa théorie de l'information quantique, parfois abrégée simplement en information quantique, est un développement de la théorie de l'information de Claude Shannon exploitant les propriétés de la mécanique quantique, notamment le principe de superposition ou encore l'intrication. L'unité qui est utilisée pour quantifier l'information quantique est le qubit, par analogie avec le bit d'information classique.
Quantum information scienceQuantum information science is a field that combines the principles of quantum mechanics with information science to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information.
Superconducting quantum computingSuperconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
Ancilla bitIn reversible computing, ancilla bits are extra bits being used to implement irreversible logical operations. In classical computation, any memory bit can be turned on or off at will, requiring no prior knowledge or extra complexity. However, this is not the case in quantum computing or classical reversible computing. In these models of computing, all operations on computer memory must be reversible, and toggling a bit on or off would lose the information about the initial value of that bit.
QubitEn informatique quantique, un qubit ou qu-bit (quantum + bit ; prononcé ), parfois écrit qbit, est un système quantique à deux niveaux, qui représente la plus petite unité de stockage d'information quantique. Ces deux niveaux, notés et selon le formalisme de Dirac, représentent chacun un état de base du qubit et en font donc l'analogue quantique du bit. Grâce à la propriété de superposition quantique, un qubit stocke une information qualitativement différente de celle d'un bit.
Quantum programmingQuantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment. Quantum circuit algorithms can be implemented on integrated circuits, conducted with instrumentation, or written in a programming language for use with a quantum computer or a quantum processor. With quantum processor based systems, quantum programming languages help express quantum algorithms using high-level constructs.
Simulateur quantiquevignette|Sur cette photo d'un simulateur quantique, les ions sont fluorescents, ce qui indique que les qubits sont tous dans le même état ("1" ou "0"). Dans de bonnes conditions expérimentales, les ions du cristal prennent spontanément une structure triangulaire. Crédit: Britton/NIST vignette|Illustration de ions piégés : Le cœur du simulateur est un cristal de deux dimensions de ions de béryllium (sphères bleues); l'électron ultrapériphériques de chaque ion est un bits quantiques (flèches rouges).