Modélisation moléculairethumb|Animation d'un modèle compact d'ADN en forme B|327x327px|alt=Modèle de l'ADN en forme B La modélisation moléculaire est un ensemble de techniques pour modéliser ou simuler le comportement de molécules. Elle est utilisée pour reconstruire la structure tridimensionnelle de molécules, en particulier en biologie structurale, à partir de données expérimentales comme la cristallographie aux rayons X. Elle permet aussi de simuler le comportement dynamique des molécules et leur mouvements internes.
Potentiel chimiqueEn thermodynamique, le potentiel chimique d'une espèce chimique correspond à la variation d'énergie d'un système thermodynamique due à la variation de la quantité (nombre de moles) de cette espèce dans ce système. Étroitement lié au deuxième principe de la thermodynamique, le potentiel chimique permet d'étudier la stabilité des espèces chimiques et leur tendance à changer d'état, à réagir chimiquement ou à migrer par diffusion. La fugacité et l'activité chimique, définies à partir du potentiel chimique, sont plus faciles à manipuler que celui-ci.
Structure tertiaireEn biochimie, la structure tertiaire ou tridimensionnelle est le repliement dans l'espace d'une chaîne polypeptidique. Ce repliement donne sa fonctionnalité à la protéine, notamment par la formation du site actif des enzymes. . La structure tertiaire correspond au degré d'organisation supérieur aux hélices α ou aux feuillets β. Ces protéines possèdent des structures secondaires associées le long de la chaîne polypeptidique. Le repliement et la stabilisation de protéines à structure tertiaire dépend de plusieurs types de liaisons faibles qui stabilisent l'édifice moléculaire.
Régression sur composantes principalesEn statistiques, la Régression sur composantes principales est une analyse en régression sur les composantes d'une analyse en composantes principales. On utilise souvent cette technique lorsque les variables explicatives sont proches d'être colinéaires, lorsque par exemple le nombre de variables est très supérieur au nombre d'individus.
Nucleic acid structureNucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary. Nucleic acid sequence Primary structure consists of a linear sequence of nucleotides that are linked together by phosphodiester bond. It is this linear sequence of nucleotides that make up the primary structure of DNA or RNA.
Charge partielleUne charge partielle est une charge électrique inférieure en valeur absolue à la charge élémentaire (c'est-à-dire inférieure à la charge de l'électron). Elle est souvent notée δ- lorsqu'elle est négative et δ+ lorsqu'elle est positive. Elle s'exprime en coulombs ou en fraction de charge élémentaire. thumb|right|320px|Un exemple de charges partielles sur une molécule: un atome plus électronégatif a une force d'attraction sur le nuage électronique plus grande que son voisin et il sera porteur d'une charge partielle négative, la liaison est dite ionisée.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Régression de PoissonEn statistique, la régression de Poisson est un modèle linéaire généralisé utilisé pour les données de comptage et les tableaux de contingence. Cette régression suppose que la variable réponse Y suit une loi de Poisson et que le logarithme de son espérance peut être modélisé par une combinaison linéaire de paramètre inconnus. Soit un vecteur de variables indépendantes, et la variable que l'on cherche à prédire. Réaliser une régression de Poisson revient à supposer que suit une loi de Poisson de paramètre , avec et les paramètres de la régression à estimer, et le produit scalaire standard de .
Multinomial logistic regressionIn statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
Densité de chargeLa densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (), le coulomb par mètre carré () et le coulomb par mètre cube () dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives.