Sur quelques équations aux dérivées partielles en lien avec le lemme de Poincaré
Publications associées (159)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We introduce a high-order spline geometric approach for the initial boundary value problem for Maxwell's equations. The method is geometric in the sense that it discretizes in structure preserving fashion the two de Rham sequences of differential forms inv ...
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...
Nontrivial spectral properties of non-Hermitian systems can lead to intriguing effects with no counterparts in Hermitian systems. For instance, in a two-mode photonic system, by dynamically winding around an exceptional point (EP) a controlled asymmetric-s ...
The transmission eigenvalue problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. In this work, we establish the Weyl law for the eigenvalues and the completeness of the generalized eigenf ...
We consider the defocusing nonlinear wave equation ❑u D jujp ⠀1u in R3 ⠂ & UOELIG;0; 1/. We prove that for any initial datum with a scaling-subcritical norm bounded by M0 the equation is globally well-posed for p D 5 C i, where i 2 .0; ...
Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
In this Master thesis we explore the convex integration method by S. Müller and V. Šverák and its applications to partial differential equations. In particular, we use it to build very irregular solutions to elliptic systems. We also apply this method to b ...
Modern manufacturing engineering is based on a ``design-through-analysis'' workflow. According to this paradigm, a prototype is first designed with Computer-aided-design (CAD) software and then finalized by simulating its physical behavior, which usually i ...
Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. T ...