Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Consider the problem of minimizing a convex differentiable function on the probability simplex, spectrahedron, or set of quantum density matrices. We prove that the expo-nentiated gradient method with Armijo line search always converges to the optimum, if the sequence of the iterates possesses a strictly positive limit point (element-wise for the vector case, and with respect to the Löwner partial ordering for the matrix case). To the best of our knowledge, this is the first convergence result for a mirror descent-type method that only requires differentiability. The proof exploits self-concordant likeness of the l og-partition function, which is of independent interest.
Daniel Kressner, Alice Cortinovis
Véronique Michaud, Vincent Werlen, Christian Rytka