Publication

Almost Optimal Scaling of Reed-Muller Codes on BEC and BSC Channels

Résumé

Consider a binary linear code of length N, minimum distance d(min), transmission over the binary erasure channel with parameter 0 < epsilon < 1 or the binary symmetric channel with parameter 0 < epsilon < 1/2, and block-MAP decoding. It was shown by Tillich and Zemor that in this case the error probability of the block-MAP decoder transitions "quickly" from delta to 1-delta for any delta > 0 if the minimum distance is large. In particular the width of the transition is of order O(1/root d(min)). We strengthen this result by showing that under suitable conditions on the weight distribution of the code, the transition width can be as small as Theta(1/N1/2-kappa), for any kappa > 0, even if the minimum distance of the code is not linear. This condition applies e.g., to Reed-Mueller codes. Since Theta(1/N-1/2) is the smallest transition possible for any code, we speak of "almost" optimal scaling. We emphasize that the width of the transition says nothing about the location of the transition. Therefore this result has no bearing on whether a code is capacity-achieving or not. As a second contribution, we present a new estimate on the derivative of the EXIT function, the proof of which is based on the Blowing-Up Lemma.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Code linéaire
En mathématiques, plus précisément en théorie des codes, un code linéaire est un code correcteur ayant une certaine propriété de linéarité. Plus précisément, un tel code est structuré comme un sous-espace vectoriel d'un espace vectoriel de dimension finie sur un corps fini. L'espace vectoriel fini utilisé est souvent F2n le terme usuel est alors celui de code linéaire binaire. Il est décrit par trois paramètres [n, k, δ] . n décrit la dimension de l'espace qui le contient. Cette grandeur est appelée longueur du code.
Canal binaire symétrique
Alice veut transmettre un message à Bob. Un canal binaire symétrique est un canal discret où Alice transmet une suite d’éléments de l'ensemble et où la probabilité d'erreur dans la transmission d'un symbole est de , pour 0 et pour 1 (d'où la symétrie). Ce canal est sans mémoire, c'est-à-dire qu'aucune archive des messages n'est conservée. En communication, un problème classique est d'envoyer de l'information d'une source à une destination via un canal de communication, en présence de bruit.
Block code
In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.
Afficher plus
Publications associées (63)

Symmetry in design and decoding of polar-like codes

Kirill Ivanov

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...
EPFL2022

Optima Age Over Erasure Channels

Emre Telatar, Elie Najm, Rajai Nasser

Previous works on age of information and erasure channels have dealt with specific models and computed the average age or average peak age for certain settings. In this paper, given a source that produces a letter every T-s seconds and an erasure channel t ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

A Unified Discretization Approach to Compute–Forward: From Discrete to Continuous Inputs

Michael Christoph Gastpar, Sung Hoon Lim, Adriano Pastore, Chen Feng

Compute–forward is a coding technique that enables receiver(s) in a network to directly decode one or more linear combinations of the transmitted codewords. Initial efforts focused on Gaussian channels and derived achievable rate regions via nested lattice ...
2022
Afficher plus
MOOCs associés (10)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.