Effet StarkEn physique atomique, l'effet Stark (du nom de son découvreur Johannes Stark) est la modification des états électroniques sous l'action d'un champ électrique qui se traduit par l'éclatement et le décalage de raies spectrales en plusieurs composantes. La valeur énergétique de ce décalage s'appelle le décalage Stark (Stark shift). C'est un effet analogue à l'effet Zeeman (modification des états électroniques par application d'un champ magnétique). L'effet Stark est, entre autres, responsable de l'élargissement des raies spectrales par des particules chargées.
Raie spectraleUne raie spectrale est une ligne sombre ou lumineuse dans un spectre électromagnétique autrement uniforme et continu. Les raies spectrales sont le résultat de l'interaction entre un système quantique (généralement des atomes, mais parfois aussi des molécules ou des noyaux atomiques) et le rayonnement électromagnétique. vignette|upright=2|Raies de Fraunhofer sur un spectre continu avec leur notation alphabétique et les longueurs d'onde correspondantes.
Largeur Doppler d'une raie spectraleEn optique, la lumière peut être absorbée (ou émise) par un atome, une molécule ou un système confiné sous forme de raie d'absorption dans le spectre électromagnétique, de fréquence . Du fait de l'agitation thermique des particules dans l'ampoule les contenant, l'effet Doppler change légèrement la fréquence d'absorption. Le profil de la raie, du fait de la loi de distribution des vitesses de Maxwell est une gaussienne, centrée sur la fréquence , d'écart-type: où m est la masse de la particule et c la célérité de la lumière.
Spectre d'émissionLe spectre d’émission d’une espèce chimique est l’intensité d’émission de ladite espèce à différentes longueurs d’onde quand elle retourne à des niveaux d’énergie inférieurs. Il est en général centré sur plusieurs pics. Comme le spectre d’absorption, il est caractéristique de l’espèce et peut être utilisé pour son identification. thumb|757px|center|Spectre d’émission du fer.thumb|757px|center|Spectre d’émission de l'hydrogène (série de Balmer dans le visible). Spectre électromagnétique | Raie spectrale Flu
Spectrométrie d'absorptionLa spectrométrie d'absorption est une méthode de spectroscopie électromagnétique utilisée pour déterminer la concentration et la structure d'une substance en mesurant l'intensité du rayonnement électromagnétique qu'elle absorbe à des longueurs d'onde différentes. La spectroscopie d'absorption peut être atomique ou moléculaire. Comme indiqué dans le tableau précédent, les rayonnements électromagnétiques exploités en spectroscopie d'absorption moléculaire vont de l'ultraviolet jusqu'aux ondes radio : La couleur d'un corps en transmission (transparence) représente sa capacité à absorber certaines longueurs d'onde.
Nombre quantique magnétiquevignette|Levée de dégénérescence des niveaux d'énergie électroniques par effet Zeeman. En mécanique quantique, le nombre quantique magnétique, noté m, également appelé nombre quantique tertiaire, est l'un des quatre nombres quantiques décrivant l'état quantique d'un électron dans un atome. Il s'agit d'un nombre entier lié au nombre quantique azimutal l par la relation : . Il correspond à la projection du moment angulaire orbital de l'électron sur l'axe de quantification, et distingue les orbitales atomiques au sein des sous-couches électroniques.
Série de BalmerEn physique atomique, la série de Balmer est la série de raies spectrales de l'atome d'hydrogène correspondant à une transition électronique d'un état quantique de nombre principal vers l'état de niveau . L'identification de la série et la formule empirique donnant les longueurs d'onde est due à Johann Balmer (en 1885) sur la base du spectre visible. La justification a posteriori provient de la physique quantique.
Spectre de l'atome d'hydrogèneLe spectre de l'hydrogène est l'ensemble des longueurs d'onde présentes dans la lumière que l'atome d'hydrogène est capable d'émettre. Ce spectre d'émission est composé de longueurs d'onde discrètes dont les valeurs sont données par la formule de Rydberg : où : est la longueur d'onde de la lumière dans le vide ; est la constante de Rydberg de l'hydrogène ; et sont des entiers tels que . L'hydrogène est le premier atome de la classification périodique. Il est formé d'un proton et d'un électron.
Hαthumb|600px|Parmi les quatre raies de la série de Balmer, la raie H alpha est la raie rouge, à droite. En physique et en astronomie, Hα, notée aussi H alpha, est une raie d’émission particulière de l’atome d’hydrogène située dans le spectre visible à . Elle correspond à une transition entre les niveaux d’énergie principaux n = 3 et n = 2. Selon le modèle de Bohr, les électrons peuplent des niveaux d’énergie quantifiés autour du noyau de l’atome. Ces niveaux d’énergie sont décrits par le nombre quantique principal n = 1, 2, 3.
Raies de Fraunhofervignette|upright=2|Les raies de Fraunhofer sur un spectre continu.|alt=Une bande de couleur allant du violet sombre à gauche au rouge sombre à droite, des traits noirs la barrent en divers endroits. lang=fr|vignette|upright=2|Le Soleil émet un rayonnement à large spectre (assez proche de celui d'un corps noir à 5250 °C), qui inclut le domaine visible par l'œil humain (les rayons dans le visible représentent environ 43 % de l'énergie reçue).