Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Spring (framework)En informatique, Spring est un framework open source pour construire et définir l'infrastructure d'une application Java, dont il facilite le développement et les tests. En 2004, Rod Johnson a écrit le livre Expert One-on-One J2EE Design and Development qui explique les raisons de la création de Spring. Spring est considéré comme un conteneur dit « léger ». La raison de ce nommage est expliquée par Erik Gollot dans l’introduction du document Introduction au framework Spring.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Fonction softmaxvignette|Fonction softmax utilisée après un CNN (Réseau neuronal convolutif). Ici le vecteur (35.4, 38.1, -5.0) est transformée en (0.06, 0.94, 0.00). Dans ce contexte de classification d'images, le chien est reconnu. En mathématiques, la fonction softmax, aussi appelée fonction softargmax ou fonction exponentielle normalisée, est une généralisation de la fonction logistique. Elle convertit un vecteur de K nombres réels en une distribution de probabilités sur K choix.
Traitement analogique du signalLe traitement analogique du signal est un type de traitement du signal effectué sur des signaux analogiques continus par un processus analogique, par opposition au traitement numérique du signal discret où le traitement du signal est effectué par un processus numérique. Le terme analogique indique qu'on représente mathématiquement le signal comme une série de valeurs continues, contrairement au terme numérique, qui indique plutôt qu'on représente le signal par une série de valeurs discrètes.
Automated machine learningAutomated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Mlpackmlpack is a machine learning software library for C++, built on top of the Armadillo library and the ensmallen numerical optimization library. mlpack has an emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and maximum flexibility for expert users. Its intended target users are scientists and engineers.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.