Baryon LambdaEn physique des particules, les baryons Lambda, notés par la lettre grecque (majuscule), sont des baryons instables constitués de trois quarks : un quark up, un quark down et, soit un quark bottom (c'est alors un baryon 0b), soit un quark charmé (baryon +c), soit un quark étrange (baryon 0, également appelé hypéron ). Le premier baryon Lambda découvert fut le 0 en 1947. Sa durée de vie, quoique très courte, était plus longue que prévu : 10-10 secondes (on s'attendait à une durée de vie mille fois plus courte).
Baryon OmégaEn physique des particules, un baryon oméga, noté par la lettre , est un baryon qui ne contient aucun quark down ou quark up. Le premier baryon oméga à avoir été découvert est le baryon Ω−, composé de trois quarks strange. Sa découverte fut une grande avancée dans l'étude des quarks, dans la mesure où son existence, sa masse et ses produits de désintégration avaient été correctement prédits par la théorie auparavant. La désintégration du baryon oméga se fait par le biais de l'interaction faible, ce qui lui confère une relativement longue durée de vie.
BaryonLes baryons sont, en physique des particules, une catégorie de particules composites (c’est-à-dire non élémentaires) formées de trois quarks, dont les représentants les plus connus sont le proton et le neutron. Le terme « baryon » vient du grec barys, qui signifie « lourd » : il se réfère au fait que les baryons sont en général plus lourds que les autres types de particules. Les baryons appartiennent à la famille des hadrons, ils sont composés de trois quarks. Leur spin demi-entier les classe dans la catégorie des fermions.
Baryon XiEn physique des particules, le baryon Xi (noté , suivant la lettre grecque xi) est le nom donné à une famille de baryons qui peuvent avoir une charge égale à +2, +1, 0 ou -1 e, où e est la charge élémentaire. Comme tous les baryons, ils contiennent trois quarks, mais en particulier un quark up ou un down avec deux quarks lourds (qui peuvent être strange, charm ou bottom). Ils sont instables et se désintègrent rapidement en cascade en particules plus légères.
LHCbLHCb (Large Hadron Collider beauty experiment : Expérience du LHC sur le quark beauté) est une expérience de physique des particules utilisant les collisions de protons produites au collisionneur LHC du CERN (Genève). Ce détecteur est spécialisé dans la physique des saveurs et la recherche de nouvelle physique par des méthodes indirectes comme la mesure de violation de la symétrie CP ou de taux d'embranchement de décroissances rares. Le détecteur LHCb se trouve sur la commune de Ferney-Voltaire en France au point 8 du LHC, à quelques mètres de la frontière suisse.
Nombre baryoniqueLe est, en physique des particules, un nombre quantique additif invariant. Il peut être défini comme le tiers de la différence entre le nombre de quarks et le nombre d'antiquarks dans le système : où est le nombre de quarks, et est le nombre d'antiquarks. D'un point de vue pratique, on divise par trois afin de faire correspondre le nombre baryonique au nombre de nucléons (protons et neutrons, tous deux constitués de trois quarks). Or, ces particules ont été connues bien avant, et sont plus familières que les quarks.
Baryon Sigmavignette|Premier octet de baryon Les baryons Sigma (aussi appelés particules Sigma) sont des baryons composés d'un quark étrange (dit quark s) et d'une combinaison de quarks up et down, le tout possédant un isospin de 1. Les baryons sigma sont des hypérons. Ils sont notés avec la lettre grecque majuscule Sigma (Σ), avec en exposant leur charge électrique, déterminée par la combinaison de quarks u et d qu'ils possèdent : Σ = uus (différent de l'ununseptium Uus) Σ = uds Σ = dds Il existe deux autres types de baryons Sigma, appelés baryon sigma charmés et baryon Sigma b, possédant respectivement un quark c et un b en lieu et place du quark s.
Asymétrie baryoniqueL'asymétrie baryonique réfère à l'excès de la matière baryonique sur l'antimatière baryonique dans l'univers observable. Bien que plusieurs hypothèses soient émises pour expliquer cet excès, dont la plupart concernent la baryogénèse, aucune d'elles ne fait consensus, et l'asymétrie baryonique demeure l'un des problèmes non résolus de la physique. La plupart des hypothèses formulées à propos de l'asymétrie baryonique impliquent la modification du modèle standard en physique des particules afin de permettre que certaines réactions (surtout celles impliquant l'interaction faible) puissent se réaliser plus facilement que leur contraire.
Radioactivitévignette|Pictogramme signalant la présence de matière radioactive. (☢) vignette|La maison de Georges Cuvier, au Jardin des plantes de Paris, où Henri Becquerel découvrit la radioactivité en 1896. La radioactivité est le phénomène physique par lequel des noyaux atomiques instables (dits radionucléides ou radioisotopes) se transforment spontanément en d'autres atomes (désintégration) en émettant simultanément des particules de matière (électrons, noyaux d'hélium, neutrons) et de l'énergie (photons et énergie cinétique).
Radioactivité βLa radioactivité β, radioactivité bêta ou émission bêta (symbole β) est, à l'origine, un type de désintégration radioactive dans laquelle une particule bêta (un électron ou un positon) est émise. On parle de désintégration bêta moins (β) ou bêta plus (β) selon qu'il s'agit de l'émission d'un électron (particule chargée négativement) ou d'un positon (particule chargée positivement). L'émission β est notamment ce qui permet la conversion d'un neutron en proton, par exemple dans les cas de transmutation comme du tritium (T) qui se transforme en hélium 3 (He) : ⟶ + e + .