Publication

What Waterfalls and Kitchen Sinks have in Common: A Comparison between Vertical and Horizontal Supported Jets

2018
Projet étudiant
Résumé

In plunging jets and at hydraulic jumps, large amounts of air bubbles are entrained at the impingement of the liquid jet and receiving body (BIN, 1993; ERVINE, 1998; CHANSON, 2009a). Air is entrapped and advected into a turbulent shear layer with strong interactions between the air bubble advection process and momentum shear flow (GOLDRING et al. 1980, SENE et al. 1994, CHANSON 2008, 2009b). New air‐water flow measurements were repeated with identical inflow conditions in a vertical supported jet and horizontal hydraulic jump. Experiments were carried out at relatively large‐scale facilities with identical inflow water depths and inflow velocities at Froude numbers between 6.5 and 13.5. Basic flow observations yielded substantial differences between the two setups. Investigations of the impingement perimeter showed remarkably larger maximum amplitudes of the impingement perimeter fluctuations in the hydraulic jump. The fluctuation frequencies of the impingement perimeter showed an increasing trend with decreasing inflow velocity in the plunging jet, whereas the fluctuation frequencies were constant in the hydraulic jump for all inflow velocities. Detailed air‐water flow measurements were carried out with intrusive phase‐detection probes. They showed similarities in terms of void fraction distributions, as in both cases they followed a Gaussian profile with a pseudo‐exponential decay in maximum air content. Air‐water interfacial velocity profiles showed self‐similar distributions, albeit there were substantial differences between horizontal hydraulic jump flow and vertical plunging jet shear layer. The transfer of momentum between impinging jet and receiving water body, as well as the buoyancy force, were affected by the flow geometry. The momentum transfer in the plunging jet seemed to be little affected by the advective diffusion process, whereas in the hydraulic jump, there seemed be some interplay between momentum transfer and air‐bubble diffusion. Bubble chord size data showed similar trends for both setups, with positively skewed distributions in both plunging jet and hydraulic jump. Their stream wise evolution was characterised by a shift towards smaller bubbles.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (42)
Couche limite
vignette|redresse=2|Couches limites laminaires et turbulentes d'un écoulement sur une plaque plane (avec profil des vitesses moyennes). La couche limite est la zone d'interface entre un corps et le fluide environnant lors d'un mouvement relatif entre les deux. Elle est la conséquence de la viscosité du fluide et est un élément important en mécanique des fluides (aérodynamique, hydrodynamique), en météorologie, en océanographie vignette|Profil de vitesses dans une couche limite.
Loi normale
En théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Nombre de Froude
Le nombre de Froude, de l'hydrodynamicien anglais William Froude, est un nombre sans dimension qui caractérise dans un fluide l'importance relative de l'énergie cinétique de ses particules par rapport à son énergie potentielle gravitationnelle. Il s'exprime donc par un rapport entre la vitesse d'une particule et la force de pesanteur qui s'exerce sur celle-ci. Ce nombre apparaît essentiellement dans les phénomènes à surface libre, en particulier dans les études de cours d'eau, de barrages, de ports et de navires (architecture navale).
Afficher plus
Publications associées (56)

Laterally unconfined neutral or negative buoyancy inflow into a quiescent ambient over sloping bottom

Haoran Shi

This work studies the nearshore hydrodynamics of a shallow turbulent flow entering a laterally unconfined quiescent ambient with a sloping bottom boundary. Examples of such flow are neutrally buoyant ebb tidal jets and hyperpycnal river plumes entering ope ...
EPFL2023

Manning's Formula and the Strickler Scaling Derived from a Co-spectral Budget Model

Gabriele Manoli, Sara Bonetti, Gabriel George Katul

Manning's empirical formula in conjunction with Strickler's scaling is widely used to predict the bulk velocity (V) from the hydraulic radius (Rh), the roughness size (r), and the slope of the energy grade line (S) in uniform channel flows at high bulk Rey ...
2023

Anomalous Dissipation and Lack of Selection in the Obukhov-Corrsin Theory of Scalar Turbulence

Maria Colombo, Massimo Sorella

The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [4 ...
London2023
Afficher plus
MOOCs associés (14)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.