Small-variance asymptotics for non-parametric online robot learning
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Adaptability and ease of programming are key features necessary for a wider spread of robotics in factories and everyday assistance. Learning from demonstration (LfD) is an approach to address this problem. It aims to develop algorithms and interfaces such ...
A vehicle's steering is a particular system in that it is exposed to individual subjective reviews based on criteria that are hard to assess quantitatively. Haptic design of such systems is a prime concern that has been at the center of industrial developm ...
In this thesis, we address the complex issue of collision avoidance in the joint space of robots. Avoiding collisions with both the robot's own body parts and obstacles in the environment is a critical constraint in motion planning and is crucial for ensur ...
The use of smartphone sensing for public health studies is appealing to understand routines. We present an approach to learn nightlife routines in a smartphone sensing dataset volunteered by 184 young people (1586 weekend nights with location data captured ...
The thesis at hand is concerned with robots' navigation in human crowds. Specifically, methods are developed for planning a mobile robot's local motion between pedestrians, and they are evaluated in experiments where a robot interacts with real pedestrians ...
This paper i) compares parametric and semi-parametric representations of unobserved heterogeneity in hierarchical Bayesian logit models and ii) applies these methods to infer distributions of willingness to pay for features of shared automated vehicle (SAV ...
Educational Robotics holds the potential to promote the development of important 21st century skills, such as creativity and problem-solving skills in addition to digital literacy. However, the emergence of the Covid-19 pandemic has posed particular obstac ...
Small variance asymptotics is emerging as a useful technique for inference in large scale Bayesian non-parametric mixture models. This paper analyses the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under small va ...
In this paper, we develop a stochastic-gradient learning algorithm for situations involving streaming data that arise from an underlying clustered structure. In such settings, the variance of gradient noise can be decomposed into the in-cluster variance si ...
A long standing goal in artificial intelligence is to make robots seamlessly interact with humans in performing everyday manipulation skills. Learning from demonstrations or imitation learning provides a promising route to bridge this gap. In contrast to d ...