Radiologie médicalevignette|right|Radiographie montrant une fracture distale de l'avant bras. thumb| Macintyre's X-Ray Film (1896) La radiologie dans le domaine médical, désigne l'ensemble des modalités diagnostiques et thérapeutiques utilisant les rayons X, ou plus généralement utilisant des rayonnements. Mais la radiologie, dans son sens plus commun, désigne la spécialité médicale exercée par un médecin radiologue en France, ou radiologiste au Canada. Un établissement de santé peut donc abriter un service de radiologie.
PET-CTPositron emission tomography–computed tomography (better known as PET-CT or PET/CT) is a nuclear medicine technique which combines, in a single gantry, a positron emission tomography (PET) scanner and an x-ray computed tomography (CT) scanner, to acquire sequential images from both devices in the same session, which are combined into a single superposed () image. Thus, functional imaging obtained by PET, which depicts the spatial distribution of metabolic or biochemical activity in the body can be more precisely aligned or correlated with anatomic imaging obtained by CT scanning.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Opérateur non bornéEn analyse fonctionnelle, un opérateur non borné est une application linéaire partiellement définie. Plus précisément, soient X, Y deux espaces vectoriels. Un tel opérateur est donné par un sous-espace dom(T) de X et une application linéaire dont l'ensemble de définition est dom(T) et l'ensemble d'arrivée est Y. Considérons X = Y = L(R) et l'espace de Sobolev H(R) des fonctions de carré intégrable dont la dérivée au sens des distributions appartient, elle aussi, à L(R).
Manipulateur en électroradiologie médicaleLe manipulateur d'électroradiologie médicale, ou technicien en radiologie médicale, est le seul professionnel paramédical autorisé à utiliser les rayonnements ionisants. De ce fait, il joue un rôle important dans la radioprotection des patients tout comme les médecins radiologues et les physiciens médicaux (radiothérapie). De plus, l'imagerie médicale prenant une place de plus en plus importante dans les diagnostics, le manipulateur radio devient un professionnel de santé central dans la chaîne du soin des patients.
Anti-aliasing filterAn anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is zero, a brick wall filter is an idealized but impractical AAF. A practical AAF makes a trade off between reduced bandwidth and increased aliasing.
Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Compact operator on Hilbert spaceIn the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments.
Matrice normaleEn algèbre linéaire, une matrice carrée A à coefficients complexes est une matrice normale si elle commute avec sa matrice adjointe A*, c'est-à-dire si A⋅A* = A*⋅A. Toutes les matrices hermitiennes, ou unitaires sont normales, en particulier, parmi les matrices à coefficients réels, toutes les matrices symétriques, antisymétriques ou orthogonales. Ce théorème — cas particulier du théorème de décomposition de Schur — est connu sous le nom de théorème spectral, et les éléments diagonaux de UAU sont alors les valeurs propres de A.