Multidimensional transformIn mathematical analysis and applications, multidimensional transforms are used to analyze the frequency content of signals in a domain of two or more dimensions. One of the more popular multidimensional transforms is the Fourier transform, which converts a signal from a time/space domain representation to a frequency domain representation. The discrete-domain multidimensional Fourier transform (FT) can be computed as follows: where F stands for the multidimensional Fourier transform, m stands for multidimensional dimension.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Fourier transform on finite groupsIn mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups. The Fourier transform of a function at a representation of is For each representation of , is a matrix, where is the degree of . The inverse Fourier transform at an element of is given by The convolution of two functions is defined as The Fourier transform of a convolution at any representation of is given by For functions , the Plancherel formula states where are the irreducible representations of .
Montage non linéairevignette|Capture d'écran du logiciel de montage non linéaire Pitivi En vidéo et en audio, un système de montage non linéaire permet un accès direct (dit parfois aléatoire) sur les images ou les sons sources captés. C'est un montage non destructif. Le montage non linéaire pour les films et la postproduction vidéo permet d'accéder directement, grâce à un ordinateur, à toute image d'une séquence vidéo ou tout passage d'une piste numérique sans va-et-vient à travers des passages intermédiaires.
SolverA solver is a piece of mathematical software, possibly in the form of a stand-alone computer program or as a software library, that 'solves' a mathematical problem. A solver takes problem descriptions in some sort of generic form and calculates their solution. In a solver, the emphasis is on creating a program or library that can easily be applied to other problems of similar type. Types of problems with existing dedicated solvers include: Linear and non-linear equations.
Overlap–add methodIn signal processing, the overlap–add method is an efficient way to evaluate the discrete convolution of a very long signal with a finite impulse response (FIR) filter : where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as or in which it is understood that the functions should be thought of in their totality, rather than at specific instants (see Convolution#Notation). The concept is to divide the problem into multiple convolutions of h[n] with short segments of : where L is an arbitrary segment length.
GF(2)(also denoted , Z/2Z or ) is the finite field of two elements (GF is the initialism of Galois field, another name for finite fields). Notations Z_2 and may be encountered although they can be confused with the notation of 2-adic integers. GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual. The elements of GF(2) may be identified with the two possible values of a bit and to the boolean values true and false.
Application de GaussEn géométrie différentielle classique, l'application de Gauss est une application naturelle différentiable sur une surface de , à valeurs dans la sphère unité , et dont la différentielle permet d'accéder à la seconde forme fondamentale. Elle tient son nom du mathématicien allemand Carl Friedrich Gauss. Soit une surface orientée de classe de . Pour un point de , il existe un unique vecteur normal unitaire compatible avec l'orientation de .
PrimitiveEn mathématiques, une primitive d’une fonction réelle (ou holomorphe) f est une fonction F dont f est la dérivée : Il s’agit donc d’un antécédent pour l’opération de dérivation. La détermination d’une primitive sert d’abord au calcul des intégrales de fonctions continues sur un segment, en application du théorème fondamental de l'analyse.
Formulation faibleEn comparaison avec la formulation forte, la formulation faible est une autre manière d'énoncer un problème physique régi par des équations différentielles ou aux dérivées partielles. Une solution forte du problème d’origine est également solution de la formulation faible. Une solution de cette dernière est naturellement appelée solution faible. L’intérêt de cette approche est de pouvoir disposer de concepts et de propriétés de l’analyse fonctionnelle, en particulier ceux des espaces de Hilbert et de Sobolev.