SatisfaisabilitéEn logique mathématique, la satisfaisabilité ou satisfiabilité et la validité sont des concepts élémentaires de sémantique. Une formule est satisfaisable s'il est possible de trouver une interprétation (modèle), une façon d'interpréter tous les éléments constitutifs de la formule, qui rend la formule vraie. Une formule est universellement valide, ou en raccourci valide si, pour toutes les interprétations, la formule est vraie.
Semantic integrationSemantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists, email archives, presence information (physical, psychological, and social), documents of all sorts, contacts (including social graphs), search results, and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as an intermediary between heterogeneous data sources, which may conflict not only by structure but also context or value.
Résolution de conflitLa résolution de conflit est un concept associé aux relations humaines, principalement lié au management et aux méthodes et outils d'aide à la prise de décision. Elle consiste dans le choix d'une solution à un affrontement et sa mise en œuvre. Lorsqu'il s'agit de pratiques en regard du système judiciaire ou d'une décision étatique, il est question de modes alternatifs de résolution des conflits. Un conflit correspond à l’interaction de personnes interdépendantes qui perçoivent des oppositions de buts et qui voient l’autre partie comme interférant dans la réalisation de leurs buts.
Quot schemeIn algebraic geometry, the Quot scheme is a scheme parametrizing sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme whose set of T-points is the set of isomorphism classes of the quotients of that are flat over T. The notion was introduced by Alexander Grothendieck. It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme.
Morphism of schemesIn algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. By definition, a morphism of schemes is just a morphism of locally ringed spaces. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties).
Uninterpreted functionIn mathematical logic, an uninterpreted function or function symbol is one that has no other property than its name and n-ary form. Function symbols are used, together with constants and variables, to form terms. The theory of uninterpreted functions is also sometimes called the free theory, because it is freely generated, and thus a free object, or the empty theory, being the theory having an empty set of sentences (in analogy to an initial algebra). Theories with a non-empty set of equations are known as equational theories.
Algebraic spaceIn mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
Sentence (mathematical logic)In mathematical logic, a sentence (or closed formula) of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
Universally unique identifierUniversally unique identifier (UUID), de l'anglais signifiant littéralement « identifiant unique universel », est en informatique un système permettant à des systèmes distribués d'identifier de façon unique une information sans coordination centrale importante. Dans ce contexte, le mot « unique » doit être pris au sens de « unicité très probable » plutôt que « garantie d'unicité ». Il s'agit d'une spécification DCE définie initialement par l'OSF (Open Software Foundation).