Publication

Global turbulence features across marginality and non-local pedestal-core interactions

Résumé

Spatially non-local aspects of turbulent transport in tokamak plasmas are examined with global gyrokinetic simulations using the ORB5 code. Inspired by very accurate measurements in the TCV tokamak in L-mode, we initialise plasma profiles with constant logarithmic gradients in the core and constant linear gradients in the 'pedestal' (ρ[0.8,1]\rho \in [0.8,\,1]). The main finding is that transport in the core is strongly affected by the presence of pedestal gradients. This non-local pedestal-core coupling appears to be correlated with the appearance of repetitive avalanches that propagate across both pedestal and core regions. Below a certain threshold value in pedestal gradient, no well-defined frequency is found for avalanches. Above this threshold, a well-defined frequency shows up, which roughly matches that of the local geodesic acoustic mode (GAM) frequency near the plasma edge and is thus well below the local GAM frequency in the core: this behaviour is very similar to the global coherent mode structure observed in TCV. Above this threshold in pedestal gradient, the core transport increases sharply: there is therefore a non-locality in marginality. The probability density functions (PDFs) of density, temperature, temperature gradient and potential are found to have nearly Gaussian distributions, whereas the heat flux can have, in the presence of avalanches, a more or less strongly positively skewed PDF, which could be fitted by a log-normal distribution. The skewness of the heat flux is found to be radially and non-locally dependent: its value in the plasma core critically depends on the presence of gradients in the pedestal. The relation flux versus gradient is examined in detail. The local instantaneous flux versus gradient relation shows a hysteresis behaviour during an avalanche but no clear correlation, unlike the flux and zonal flow (ZF) shearing rate, which are anti-correlated: flux is higher when shearing rate is lower. This leads to corrugated time-averaged radial profiles of transport, heat and temperature gradient, with heat diffusivity having local maxima where the ZF shearing rate goes to zero and temperature gradient has local minima. Finally, we show how the flux versus gradient relation can be analysed locally for series of simulations with different averaged gradients.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Loi normale
En théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Tokamak
thumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite. Un tokamak est un dispositif de confinement magnétique expérimental explorant la physique des plasmas et les possibilités de produire de l'énergie par fusion nucléaire. Il existe deux types de tokamaks aux caractéristiques sensiblement différentes, les tokamaks traditionnels toriques (objet de cet article) et les tokamaks sphériques.
Loi log-normale
En théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Afficher plus
Publications associées (79)

Nonlinear simulation of plasma turbulence using a gyrokinetic moment-based approach

Antoine Cyril David Hoffmann

Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
EPFL2024

Gyrokinetic turbulence modeling of a high performance scenario in JT-60SA

Stefano Coda, Stephan Brunner, Aylwin Iantchenko

Local gyrokinetic simulations are used to model turbulent transport for the first time in a representative high-performance plasma discharge projected for the new JT-60SA tokamak. The discharge features a double-null separatrix, 41 MW of combined neutral b ...
Bristol2024

Mean-field transport equations and energy theorem for plasma edge turbulent transport

Reinart Andreas J. Coosemans

This paper establishes a mean-field equation set and an energy theorem to provide a theoretical basis in view of the development of self-consistent, physics-based turbulent transport models for mean-field transport codes. A rigorous averaging procedure ide ...
Cambridge Univ Press2024
Afficher plus
MOOCs associés (21)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.