Code de Hamming (7,4)En théorie des codes, le Code de Hamming (7,4) est un code correcteur linéaire binaire de la famille des codes de Hamming. À travers un message de sept bits, il transfère quatre bits de données et trois bits de parité. Il permet la correction d'un bit erroné. Autrement dit, si, sur les sept bits transmis, l'un d'eux au plus est altéré (un « zéro » devient un « un » ou l'inverse), alors il existe un algorithme permettant de corriger l'erreur. Il fut introduit par Richard Hamming (1915-1998) en 1950 dans le cadre de son travail pour les laboratoires Bell.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Grand strategyGrand strategy or high strategy is a state's strategy of how means (military and nonmilitary) can be used to advance and achieve national interests in the long-term. Issues of grand strategy typically include the choice of military doctrine, force structure and alliances, as well as economic relations, diplomatic behavior, and methods to extract or mobilize resources.
Algorithme de Strassenvignette|Algorithme de Strassen où sont représentés les matrices Ci,j ainsi que les 7 nouvelles matrices Mi En mathématiques, plus précisément en algèbre linéaire, l’algorithme de Strassen est un algorithme calculant le produit de deux matrices carrées de taille n, proposé par Volker Strassen en 1969. La complexité de l'algorithme est en , avec pour la première fois un exposant inférieur à celui de la multiplication naïve qui est en . Par contre, il a l'inconvénient de ne pas être stable numériquement.