Concept

Sous-espace vectoriel

Résumé
En algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : *la somme de deux vecteurs de F appartient à F ; *le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille. Définitions équivalentes Soit E un espace vectoriel sur un corps K. En effet, la condition 1, plus forte que la condition « F est non vide et stable par sommes », lui est équivalente en présence de la condition 2 car cette dernière entraîne que F est stable par opposés (si alors –u = (–1)∙u ∈ F). Une caractérisation intermédiaire donc également équivalente est : Par ailleurs, la stabilité par combina
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement