Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Matrice à diagonale dominanteIn mathematics, a square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of the diagonal entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal) entries in that row. More precisely, the matrix A is diagonally dominant if where aij denotes the entry in the ith row and jth column. This definition uses a weak inequality, and is therefore sometimes called weak diagonal dominance. If a strict inequality (>) is used, this is called strict diagonal dominance.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.
Racine carrée d'une matriceEn mathématiques, la notion de racine carrée d'une matrice particularise aux anneaux de matrices carrées la notion générale de racine carrée dans un anneau. Soient un entier naturel n non nul et M une matrice carrée d'ordre n à coefficients dans un anneau A. Un élément R de M(A) est une racine carrée de M si R = M. Une matrice donnée peut n'admettre aucune racine carrée, comme un nombre fini voire infini de racine carrées. Dans M(R) : est une racine carrée de les (pour tout réel x) sont des racines carrées de n'a pas de racine carrée R, car cela imposerait (mais elle en a dans M(C)).
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Mineur (algèbre linéaire)vignette|Il est possible d'utiliser les mineurs d'ordre 2 d'une matrice de dimension 3 pour calculer son déterminant. En algèbre linéaire, les mineurs d'une matrice sont les déterminants de ses sous-matrices carrées. Ainsi si A est une matrice de taille m par n, on appelle mineur d'ordre k le déterminant d'une sous-matrice carrée de taille k obtenue en supprimant m – k lignes et n – k colonnes de la matrice initiale, ce que l'on peut noter det A, où I ( J) est une partie à k éléments de {1, ..., m ( n)}.
Matrice de HessenbergEn algèbre linéaire, une matrice de Hessenberg est une matrice carrée qui est « presque » triangulaire. Pour être exact, dans une matrice de Hessenberg dite « supérieure », tous les éléments se trouvant en dessous de la première sous-diagonale (i.e., la diagonale en dessous de la diagonale principale) sont nuls, et dans une matrice de Hessenberg dite « inférieure », tous les éléments situés au-dessus de la première super-diagonale (i.e., la diagonale au-dessus de la diagonale principale) sont nuls.