Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Two subsets A,B of an n-element ground set X are said to be crossing, if none of the four sets AB, A\B, B\A and X(AB) are empty. It was conjectured by Karzanov and Lomonosov forty years ago that if a family F of subsets of X does not contain k pairwise crossing elements, then |F|=O(kn). For k=2 and 3, the conjecture is true, but for larger values of k the best known upper bound, due to Lomonosov, is |F|=O(knlogn). In this paper, we improve this bound for large n by showing that |F|=O-k(nlogn) holds, where log denotes the iterated logarithm function.