Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose an algorithmic framework for convex minimization problems of a composite function with two terms: a self-concordant function and a possibly nonsmooth regularization term. Our method is a new proximal Newton algorithm that features a local quadra ...
Over the past few decades we have been experiencing a data explosion; massive amounts of data are increasingly collected and multimedia databases, such as YouTube and Flickr, are rapidly expanding. At the same time rapid technological advancements in mobil ...
Abstract. The self-concordant-like property of a smooth convex func- tion is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the self- concordant-like property, this concept has ...
Machine learning is most often cast as an optimization problem. Ideally, one expects a convex objective function to rely on efficient convex optimizers with nice guarantees such as no local optima. Yet, non-convexity is very frequent in practice and it may ...
The self-concordant-like property of a smooth convex func- tion is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the self- concordant-like property, this concept has heretofor ...
System identification using multiple-model strategies may involve thousands of models with several parameters. However, only a few models are close to the correct model. A key task involves finding which parameters are important for explaining candidate mo ...
We present a framework based on convex optimization and spectral regularization to perform learning when feature observations are multidimensional arrays (tensors). We give a mathematical characterization of spectral penalties for tensors and analyze a uni ...
In this work, we study the task of distributed optimization over a network of learners in which each learner possesses a convex cost function, a set of affine equality constraints, and a set of convex inequality constraints. We propose a distributed diffus ...
Solving a convex optimization problem within an a priori certified period of time is a challenging problem. This paper discusses the certification of Nesterov’s fast gradient method for problems with a strictly quadratic objective and a feasible set given ...
A new decomposition optimization algorithm, called path-following gradient-based decomposition, is proposed to solve separable convex optimization problems. Unlike path-following Newton methods considered in the literature, this algorithm does not require ...