Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Abstract. The self-concordant-like property of a smooth convex func- tion is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the self- concordant-like property, this concept has heretofore remained unex- ploited in convex optimization. To this end, we develop a variable metric framework of minimizing the sum of a \simple" convex function and a self-concordant-like function.We introduce a new analytic step-size selec- tion procedure and prove that the basic gradient algorithm has improved convergence guarantees as compared to \fast" algorithms that rely on the Lipschitz gradient property. Our numerical tests with real-data sets show that the practice indeed follows the theory.
Volkan Cevher, Kimon Antonakopoulos, Efstratios Panteleimon Skoulakis, Leello Tadesse Dadi, Ali Kavis