Distance de TchebychevLa distance de Tchebychev, distance de Chebyshev ou ∞-distance, est la distance entre deux points donnée par la différence maximale entre leurs coordonnées sur une dimension. La distance de Tchebychev tient son nom du mathématicien russe Pafnouti Tchebychev. Entre deux points A et B, de coordonnées respectives et , la distance de Tchebychev est définie par : Autrement dit : c'est la distance associée à la norme « infini ». La distance de Tchebychev est équivalente à la d'ordre infini.
Espace topologiqueLa topologie générale est une branche des mathématiques qui fournit un vocabulaire et un cadre général pour traiter des notions de limite, de continuité, et de voisinage. Les espaces topologiques forment le socle conceptuel permettant de définir ces notions. Elles sont suffisamment générales pour s'appliquer à un grand nombre de situations différentes : ensembles finis, ensembles discrets, espaces de la géométrie euclidienne, espaces numériques à n dimensions, espaces fonctionnels plus complexes, mais aussi en géométrie algébrique.
Uniform normIn mathematical analysis, the uniform norm (or ) assigns to real- or complex-valued bounded functions f defined on a set S the non-negative number This norm is also called the , the , the , or, when the supremum is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions \left{f_n\right} converges to f under the metric derived from the uniform norm if and only if f_n converges to f uniformly.
Hearing the shape of a drumTo hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes, i.e., from the list of overtones, via the use of mathematical theory. "Can One Hear the Shape of a Drum?" is the title of a 1966 article by Mark Kac in the American Mathematical Monthly which made the question famous, though this particular phrasing originates with Lipman Bers. Similar questions can be traced back all the way to physicist Arthur Schuster in 1882. For his paper, Kac was given the Lester R.
Variation quadratiqueEn mathématiques, la variation quadratique est utilisée dans l'analyse des processus stochastiques, comme le mouvement brownien et autres martingales. La variation quadratique est un type de variation d'un processus. Si est un processus stochastique à valeurs réelles défini sur un espace probabilisé et avec un indice de temps qui parcourt les nombres réels positifs, sa variation quadratique est le processus, noté , défini par : où parcourt les subdivisions de l'intervalle et la norme de la subdivision est son pas.