Résumé
La topologie générale est une branche des mathématiques qui fournit un vocabulaire et un cadre général pour traiter des notions de limite, de continuité, et de voisinage. Les espaces topologiques forment le socle conceptuel permettant de définir ces notions. Elles sont suffisamment générales pour s'appliquer à un grand nombre de situations différentes : ensembles finis, ensembles discrets, espaces de la géométrie euclidienne, espaces numériques à n dimensions, espaces fonctionnels plus complexes, mais aussi en géométrie algébrique. Ces concepts apparaissent dans presque toutes les branches des mathématiques ; ils sont donc centraux dans la vision moderne des mathématiques. La topologie générale ne tente pas d'élucider la question très complexe de la « composition du continu » : elle part d'une approche axiomatique, en utilisant le vocabulaire de la théorie des ensembles ; autrement dit, elle suit une approche fondée sur la notion de structure (en l'occurrence, ici, une structure topologique), en faisant usage d'une axiomatique ensembliste. Les axiomes sont minimaux, et en ce sens, c'est la structure la plus générale pour étudier les concepts cités. La topologie générale définit le vocabulaire fondamental, mais permet aussi la démonstration de résultats non triviaux et puissants, tels que le théorème de Baire. Elle possède deux prolongements importants, permettant une analyse plus approfondie encore de la notion générale de « forme » : la topologie différentielle, généralisant les outils de l'analyse classique (dérivée, champs de vecteurs, etc.) et la topologie algébrique, introduisant des invariants calculables tels que les groupes d'homologie. Cet article est technique ; une vision générale et historique est ébauchée dans l'article « Topologie ». Deux définitions équivalentes sont souvent données : la définition par les ouverts, et la définition par les voisinages d'un point. La première est plus ramassée, la seconde souvent plus intuitive. Le passage d'une définition à l'autre est direct.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.