In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process.
Suppose that is a real-valued stochastic process defined on a probability space and with time index ranging over the non-negative real numbers. Its quadratic variation is the process, written as , defined as
where ranges over partitions of the interval and the norm of the partition is the mesh. This limit, if it exists, is defined using convergence in probability. Note that a process may be of finite quadratic variation in the sense of the definition given here and its paths be nonetheless almost surely of infinite 1-variation for every in the classical sense of taking the supremum of the sum over all partitions; this is in particular the case for Brownian motion.
More generally, the covariation (or cross-variance) of two processes and is
The covariation may be written in terms of the quadratic variation by the polarization identity:
Notation: the quadratic variation is also notated as or .
A process is said to have finite variation if it has bounded variation over every finite time interval (with probability 1). Such processes are very common including, in particular, all continuously differentiable functions. The quadratic variation exists for all continuous finite variation processes, and is zero.
This statement can be generalized to non-continuous processes. Any càdlàg finite variation process has quadratic variation equal to the sum of the squares of the jumps of . To state this more precisely, the left limit of with respect to is denoted by , and the jump of at time can be written as . Then, the quadratic variation is given by
The proof that continuous finite variation processes have zero quadratic variation follows from the following inequality. Here, is a partition of the interval , and is the variation of over .
By the continuity of , this vanishes in the limit as goes to zero.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
In this course we will introduce and study numerical integrators for stochastic differential equations. These numerical methods are important for many applications.
In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes).
Le calcul est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, c'est une extension de la théorie des probabilités. Ne pas confondre avec la technique des calculateurs stochastiques. Le domaine d’application du calcul stochastique comprend la mécanique quantique, le traitement du signal, la chimie, les mathématiques financières, la météorologie et même la musique. Un processus aléatoire est une famille de variables aléatoires indexée par un sous-ensemble de ou , souvent assimilé au temps (voir aussi Processus stochastique).
Dans la théorie des processus stochastiques, une martingale locale est un processus stochastique qui est localement une martingale, ce qui signifie qu'il y a une suite de localisation de temps d'arrêt et que le processus arrêté est une martingale. Soi un espace de probabilité filtré et un processus -adapté avec (zéro à zéro). S'il existe une suite non décroissante de temps d'arrêt de telle que et pour tout le processus arrêté défini par soit une martingale, alors on appelle une martingale locale et on écrit .
Couvre le théorème de décomposition de Doob pour les sous-martingales et explore les propriétés des mouvements browniens, la variation quadratique et les martingales continues.
We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction, and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear sys ...
It is hard to overestimate the role of winter roads in the land logistics of the northern regions. In recent years, climate change has not only significantly reduced the service life of winter roads, but also made them less predictable. This forces transpo ...
2023
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...