**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Construction of Polar Codes With Sublinear Complexity

Seyed Hamed Hassani, Marco Mondelli, Rüdiger Urbanke

*IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, *2019

Article

Article

Résumé

Consider the problem of constructing a polar code of block length N for a given transmission channel W. Previous approaches require one to compute the reliability of the N synthetic channels and then use only those that are sufficiently reliable. However, we know from two independent works by Schurch and by Bardet et al. that the synthetic channels are partially ordered with respect to degradation. Hence, it is natural to ask whether the partial order can be exploited to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order, we can construct a polar code by computing the reliability of roughly a fraction 1/log(3/2) N of the synthetic channels. In particular, we prove that N/log(3/2) N is a lower bound on the number of synthetic channels to be considered and such a bound is tight up to a multiplicative factor log log N. This set of roughly N/log(3/2) N synthetic channels is universal, in the sense that it allows one to construct polar codes for any W, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists of reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general, and it can be used to further improve the complexity of the construction problem, in case a refined partial order on the synthetic channels of polar codes is discovered.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (3)

Chargement

Chargement

Chargement

Concepts associés (8)

Codes polaires

En théorie de l'information, les codes polaires sont une classe de codes de correction d'erreurs découverts en 2009 par Erdal Arıkan.
Ces codes sont les premiers codes pouvant atteindre, de façon p

Canal de communication (théorie de l'information)

vignette
En théorie de l'information, un canal de communication ou canal de transmission est un support (physique ou non) permettant la transmission d'une certaine quantité d'information, depuis une s

Complexité en temps

En algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arrive

Seyed Hamed Hassani, Ramtin Pedarsani, Emre Telatar

We consider the problem of efficiently constructing polar codes over binary memoryless symmetric (BMS) channels. The complexity of designing polar codes via an exact evaluation of the polarized channels to find which ones are "good" appears to be exponential in the block length. In [3], Tal and Vardy show that if instead the evaluation if performed approximately, the construction has only linear complexity. In this paper, we follow this approach and present a framework where the algorithms of [3] and new related algorithms can be analyzed for complexity and accuracy. We provide numerical and analytical results on the efficiency of such algorithms, in particular we show that one can find all the "good" channels (except a vanishing fraction) with almost linear complexity in block-length (except a polylogarithmic factor).

The year 2016, in which I am writing these words, marks the centenary of Claude Shannon, the father of information theory. In his landmark 1948 paper "A Mathematical Theory of Communication", Shannon established the largest rate at which reliable communication is possible, and he referred to it as the channel capacity. Since then, researchers have focused on the design of practical coding schemes that could approach such a limit. The road to channel capacity has been almost 70 years long and, after many ideas, occasional detours, and some rediscoveries, it has culminated in the description of low-complexity and provably capacity-achieving coding schemes, namely, polar codes and iterative codes based on sparse graphs. However, next-generation communication systems require an unprecedented performance improvement and the number of transmission settings relevant in applications is rapidly increasing. Hence, although Shannon's limit seems finally close at hand, new challenges are just around the corner. In this thesis, we trace a road that goes from polar to Reed-Muller codes and, by doing so, we investigate three main topics: unified scaling, non-standard channels, and capacity via symmetry. First, we consider unified scaling. A coding scheme is capacity-achieving when, for any rate smaller than capacity, the error probability tends to 0 as the block length becomes increasingly larger. However, the practitioner is often interested in more specific questions such as, "How much do we need to increase the block length in order to halve the gap between rate and capacity?". We focus our analysis on polar codes and develop a unified framework to rigorously analyze the scaling of the main parameters, i.e., block length, rate, error probability, and channel quality. Furthermore, in light of the recent success of a list decoding algorithm for polar codes, we provide scaling results on the performance of list decoders. Next, we deal with non-standard channels. When we say that a coding scheme achieves capacity, we typically consider binary memoryless symmetric channels. However, practical transmission scenarios often involve more complicated settings. For example, the downlink of a cellular system is modeled as a broadcast channel, and the communication on fiber links is inherently asymmetric. We propose provably optimal low-complexity solutions for these settings. In particular, we present a polar coding scheme that achieves the best known rate region for the broadcast channel, and we describe three paradigms to achieve the capacity of asymmetric channels. To do so, we develop general coding "primitives", such as the chaining construction that has already proved to be useful in a variety of communication problems. Finally, we show how to achieve capacity via symmetry. In the early days of coding theory, a popular paradigm consisted in exploiting the structure of algebraic codes to devise practical decoding algorithms. However, proving the optimality of such coding schemes remained an elusive goal. In particular, the conjecture that Reed-Muller codes achieve capacity dates back to the 1960s. We solve this open problem by showing that Reed-Muller codes and, in general, codes with sufficient symmetry are capacity-achieving over erasure channels under optimal MAP decoding. As the proof does not rely on the precise structure of the codes, we are able to show that symmetry alone guarantees optimal performance.

Seyed Hamed Hassani, Rüdiger Urbanke

Polar codes, invented by Arikan in 2009, are known to achieve the capacity of any binary-input memoryless outputsymmetric channel. Further, both the encoding and the decoding can be accomplished in O(N log(N)) real operations, where N is the blocklength. One of the few drawbacks of the original polar code construction is that it is not universal. This means that the code has to be tailored to the channel if we want to transmit close to capacity. We present two "polar-like" schemes that are capable of achieving the compound capacity of the whole class of binary-input memoryless symmetric channels with low complexity. Roughly speaking, for the first scheme we stack up N polar blocks of length N on top of each other but shift them with respect to each other so that they form a "staircase." Then by coding across the columns of this staircase with a standard ReedSolomon code, we can achieve the compound capacity using a standard successive decoder to process the rows (the polar codes) and in addition a standard Reed-Solomon erasure decoder to process the columns. Compared to standard polar codes this scheme has essentially the same complexity per bit but a block length which is larger by a factor O(N log(2)(N)/epsilon). Here N is the required blocklength for a standard polar code to achieve an acceptable block error probability for a single channel at a distance of at most ! from capacity. For the second scheme we first show how to construct a true polar code which achieves the compound capacity for a finite number of channels. We achieve this by introducing special " polarization" steps which " align" the good indices for the various channels. We then show how to exploit the compactness of the space of binary-input memoryless output-symmetric channels to reduce the compound capacity problem for this class to a compound capacity problem for a finite set of channels. This scheme is similar in spirit to standard polar codes, but the price for universality is a considerably larger blocklength.