Publication

Extremal behaviour of aggregated data with an application to downscaling

Résumé

The distribution of spatially aggregated data from a stochastic process may exhibit tail behaviour different from that of its marginal distributions. For a large class of aggregating functionals we introduce the -extremal coefficient, which quantifies this difference as a function of the extremal spatial dependence in . We also obtain the joint extremal dependence for multiple aggregation functionals applied to the same process. Formulae for the -extremal coefficients and multivariate dependence structures are derived in important special cases. The results provide a theoretical link between the extremal distribution of the aggregated data and the corresponding underlying process, which we exploit to develop a method for statistical downscaling. We apply our framework to downscale daily temperature maxima in the south of France from a gridded dataset and use our model to generate high-resolution maps of the warmest day during the heatwave.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.