Dislocation multiplication in stage II deformation of fcc multi-slip single crystals
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The intrinsic lattice resistance to dislocation motion, or Peierls stress, depends on the core structure of the dislocation and is one essential feature controlling plastic anisotropy in materials such as HCP Zn, Mg, and Ti. Here, we implement an anisotrop ...
Body-centered cubic metals are of high technological interest: for example tungsten as potential plasma facing component in future fusion reactors, molybdenum employed in aircraft parts, niobium as superconducting magnets, etc. The characteristics of their ...
Low-temperature deformation of body-centered cubic metals shows a significant amount of plastic slip on planes with low shear stresses, a phenomenon called anomalous slip. Despite progress in atomistic modeling of the consequences of complex stress states ...
The aim of the thesis is to obtain more understanding about the influence of plastic deformation on the microstructural changes observed in single crystal (SX) Ni-based superalloys using diffraction techniques. This work was organised around two main probl ...
With recent developments in micro and nano-technologies, mechanical components such as those used in medicine or electronics tend to be miniaturized, requiring a new set of testing techniques to study their reliability and performance. One of the new metho ...
Molecular dynamics simulation is used to study the formation of the a(0) < 1 0 0 > binary dislocation junction in body-centered cubic Fe. Results show that under an applied strain two intersecting 1/2 a(0) < 1 1 1 > dislocations, one mobile edge and one im ...
Atomistic simulations of the effects of H on edge dislocation mobility and pile-ups are performed to investigate possible nanoscale mechanisms for hydrogen-enhanced localized plasticity (HELP). alpha-Fe is used as a model system because H diffusion is fast ...
Thanks to their unique morphology, nanowires have enabled integration of materials in a way that was not possible before with thin film technology. In turn, this opens new avenues for applications in the areas of energy harvesting, electronics, and optoele ...
A mechanism for (1 0 (1) over bar 2) twin nucleation in Mg is studied in which edge < c > and mixed < c + a > lattice dislocations dissociate into a stable twin, having at least the minimum 6-layer thickness formed by three glissile twinning dislocations, ...
Nanoindentation and nanoscratching of an indium phosphide (InP) semiconductor surface was investigated via contact mechanics. Plastic deformation in InP is known to be caused by the nucleation, propagation, and multiplication of dislocations. Using selecti ...