Problème à N corpsLe problème à N corps est un problème de mécanique céleste consistant à déterminer les trajectoires d'un ensemble de N corps s'attirant mutuellement ; plus précisément, il s'agit de résoudre les équations du mouvement de Newton pour N corps interagissant gravitationnellement, connaissant leurs masses ainsi que leurs positions et vitesses initiales. Le cas (problème à deux corps) a été résolu par Newton, mais dès (problème à trois corps) apparaissent des solutions essentiellement impossibles à expliciter, car sensibles aux conditions initiales.
Self énergieL'auto-énergie ou self-énergie (en anglais) d'une particule élémentaire représente la contribution à son énergie, ou sa masse effective, due aux interactions entre la particule et le système dont elle fait partie. Par exemple, en électrostatique, la self énergie d'une distribution de charge donnée est l'énergie requise pour construire la distribution à partir des charges qui la constitue placé à l'infini, où la force électrique est nulle.
Vol orbitalvignette|Soyouz en vol orbital lors de la Apollo-Soyouz en 1975. Un vol orbital est un vol spatial où l'engin est placé en orbite autour d'un astre, ce qui signifie qu'il décrit une trajectoire circulaire autour de celui-ci sous l'effet de la gravitation. Pour mettre en orbite un satellite, il faut lui faire atteindre une vitesse et une altitude suffisante. Pour atteindre une orbite terrestre basse, le satellite doit atteindre la première vitesse cosmique qui représente la vitesse de satellisation minimale autour de la Terre.
Lunar theoryLunar theory attempts to account for the motions of the Moon. There are many small variations (or perturbations) in the Moon's motion, and many attempts have been made to account for them. After centuries of being problematic, lunar motion can now be modeled to a very high degree of accuracy (see section Modern developments).
Méthode de Hartree-FockEn physique et chimie numérique, la méthode de Hartree-Fock est une méthode de résolution approchée de l'équation de Schrödinger d'un système quantique à plusieurs corps utilisant le principe variationnel pour approximer la fonction d'onde et l'énergie du niveau fondamental stationnaire. La méthode suppose habituellement que la fonction d'onde du système à plusieurs corps peut être approximativement écrite sous la forme d'un déterminant de Slater lorsque les particules sont des fermions, ou bien par un permanent pour le cas de bosons.