Grappe de serveursOn parle de grappe de serveurs, de cluster, de groupement de serveurs ou de ferme de calcul (computer cluster en anglais) pour désigner des techniques consistant à regrouper plusieurs ordinateurs indépendants appelés nœuds (node en anglais), afin de permettre une gestion globale et de dépasser les limitations d'un ordinateur pour : augmenter la disponibilité ; faciliter la montée en charge ; permettre une répartition de la charge ; faciliter la gestion des ressources (processeur, mémoire vive, disques durs,
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Filter designFilter design is the process of designing a signal processing filter that satisfies a set of requirements, some of which may be conflicting. The purpose is to find a realization of the filter that meets each of the requirements to a sufficient degree to make it useful. The filter design process can be described as an optimization problem where each requirement contributes to an error function that should be minimized. Certain parts of the design process can be automated, but normally an experienced electrical engineer is needed to get a good result.
Coefficient de clusteringalt=|vignette|Un graphe de fort coefficient de clustering. En théorie des graphes et en analyse des réseaux sociaux, le coefficient de clustering d'un graphe (aussi appelé coefficient d'agglomération, de connexion, de regroupement, d'agrégation ou de transitivité), est une mesure du regroupement des nœuds dans un réseau. Plus précisément, ce coefficient est la probabilité que deux nœuds soient connectés sachant qu'ils ont un voisin en commun.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
High-availability clusterHigh-availability clusters (also known as HA clusters, fail-over clusters) are groups of computers that support server applications that can be reliably utilized with a minimum amount of down-time. They operate by using high availability software to harness redundant computers in groups or clusters that provide continued service when system components fail. Without clustering, if a server running a particular application crashes, the application will be unavailable until the crashed server is fixed.
Détection d'anomaliesDans l'exploration de données, la détection d'anomalies (en anglais, anomaly detection ou outlier detection) est l'identification d'éléments, d'événements ou d'observations rares qui soulèvent des suspicions en différant de manière significative de la majorité des autres données. Généralement, les anomalies indiquent un problème tel qu'une fraude bancaire, un défaut structurel, un problème médical ou une erreur dans un texte. Les anomalies sont également appelées des valeurs aberrantes, du bruit, des écarts ou des exceptions.
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.
Filtre numériqueEn électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.