Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
To do homological algebra with unbounded chain complexes one needs to first find a way of constructing resolutions. Spal-tenstein solved this problem for chain complexes of R-modules by truncating further and further to the left, resolving the pieces, and gluing back the partial resolutions. Our aim is to give a homotopy theoretical interpretation of this procedure, which may be extended to a relative setting. We work in an arbitrary abelian category A and fix a class of "injective objects" I. We show that Spaltenstein's construction can be captured by a pair of adjoint functors between unbounded chain complexes and towers of non-positively graded ones. This pair of adjoint functors forms what we call a Quillen pair and the above process of truncations, partial resolutions, and gluing, gives a meaningful way to resolve complexes in a relative setting up to a split error term. In order to do homotopy theory, and in particular to construct a well behaved relative derived category D(A;I), we need more: the split error term must vanish. This is the case when I is the class of all injective R-modules but not in general, not even for certain classes of injectives modules over a Noetherian ring. The key property is a relative analogue of Roos's AB4*-n axiom for abelian categories. Various concrete examples such as Gorenstein homological algebra and purity are also discussed.