The main goal of my research is to establish guidelines for workplace design based on human biomechanics: specifically sitting workplaces and handling areas in 1/6G-1/3G (Moon, Mars) conditions. Such a workplace could be used in long-term space missions in order to maximize worker performance and minimize the risks of musculoskeletal injuries. Research objective is to formalize a baseline workplace design based on best practices limited to the tasks: operating a computer, assembling/maintenance operations. Proposed steps:
This research addresses problems revealed by workplace design in confined conditions found in Earth or near-Earth facilities in extreme environments including in underwater conditions, remote & non-remote locations and Low Earth Orbit (LEO), habitat simulators. Human-centered design strategies and biomechanics issues for creating an effective workplace design for long-term missions will also be addressed. The recommendations for design, maintenance, and usage of this workplace in different gravity conditions (1G, 1/6G,1/3G) will be provided. The design optimization of such a workplaces design based on human biomechanics will be done with the help of numerical simulations and digital human modeling. Physical experiments will validate these results by means of the suspension system, underwater experiment and possible by parabolic flights. This work may have a significant impact on workplace designs for both Earth and Space projects.
Keywords: biomechanics, workplace, posture, extreme environments, human-centered design, Moon/Mars exploration, comfort conditions, task performance, reduced gravity, digital human modeling, motion capture
Dimitrios Kyritsis, Jinzhi Lu, Xiaochen Zheng