Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a discretization method for continuous-domain linear inverse problems with multiple-order total-variation (TV) regularization. It is based on a recent result that proves that such inverse problems have sparse polynomial-spline solutions. Our method consists in restricting the search space to splines with knots on a uniform grid, which results in a standard convex finite-dimensional problem. As basis functions for this search space, we use the B-splines matched to the regularization order, which are optimally localized. This leads to a well-conditioned, computationally feasible optimization task. Our proposed iterative multiresolution algorithm then refines the grid size until a desired level of accuracy is met and converges to sparse solutions of our inverse problem. Finally, we present experimental results that validate our approach.
Michaël Unser, Shayan Aziznejad, Thomas Jean Debarre