Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Speckle (interference)Speckle, speckle pattern, or speckle noise is a granular degrading the as a consequence of interference among wavefronts in coherent imaging systems, such as radar, synthetic aperture radar (SAR), medical ultrasound and optical coherence tomography. Speckle is not external noise; rather, it is an inherent fluctuation in diffuse reflections, because the scatterers are not identical for each cell, and the coherent illumination wave is highly sensitive to small variations in phase changes.
Double-clad fiberDouble-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the core. It is surrounded by the inner cladding, which is surrounded by the outer cladding. The three layers are made of materials with different refractive indices. There are two different kinds of double-clad fibers. The first was developed early in optical fiber history with the purpose of engineering the dispersion of optical fibers.
Exactitude et précisionvignette|Schéma de l'exactitude et la précision appliquée à des lancers de fléchettes. Dans la mesure d'un ensemble, l'exactitude est la proximité des mesures à une valeur spécifique, tandis que la précision est la proximité des mesures les unes par rapport aux autres. L'exactitude a deux définitions : Plus communément, il s'agit d'une description des erreurs systématiques, une mesure du biais statistique ; une faible précision entraîne une différence entre un résultat et une valeur « vraie ».
OpenCVOpenCV (pour Open Computer Vision) est une bibliothèque libre, initialement développée par Intel, spécialisée dans le en temps réel. La société de robotique Willow Garage, puis la société ItSeez se sont succédé au support de cette bibliothèque. Depuis 2016 et le rachat de ItSeez par Intel, le support est de nouveau assuré par Intel. Cette bibliothèque est distribuée sous licence BSD. NVidia a annoncé en septembre 2010 qu'il développerait des fonctions utilisant CUDA pour OpenCV.
Test unitaireEn programmation informatique, le test unitaire (ou « T.U. », ou « U.T. » en anglais) est une procédure permettant de vérifier le bon fonctionnement d'une partie précise d'un logiciel ou d'une portion d'un programme (appelée « unité » ou « module »). Dans les applications non critiques, l'écriture des tests unitaires a longtemps été considérée comme une tâche secondaire. Cependant, les méthodes Extreme programming (XP) ou Test Driven Development (TDD) ont remis les tests unitaires, appelés « tests du programmeur », au centre de l'activité de programmation.
ImageNetImageNet est une base de données d'images annotées produit par l'organisation du même nom, à destination des travaux de recherche en vision par ordinateur. En 2016, plus de dix millions d'URLs ont été annotées à la main pour indiquer quels objets sont représentés dans l'image ; plus d'un million d'images bénéficient en plus de boîtes englobantes autour des objets. La base de données d'annotations sur des URL d'images tierces est disponible librement, ImageNet ne possédant cependant pas les images elles-mêmes.
ImageUne image est une représentation visuelle, voire mentale, de quelque chose (objet, être vivant ou concept). Elle peut être naturelle (ombre, reflet) ou artificielle (sculpture, peinture, photographie), visuelle ou non, tangible ou conceptuelle (métaphore), elle peut entretenir un rapport de ressemblance directe avec son modèle ou au contraire y être liée par un rapport plus symbolique. Pour la sémiologie ou sémiotique, qui a développé tout un secteur de sémiotique visuelle, l'image est conçue comme produite par un langage spécifique.
Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.