How single neuron properties shape chaotic dynamics and signal transmission in random neural networks
Publications associées (378)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Time series analysis has proven to be a powerful method to characterize several phenomena in biology, neuroscience and economics, and to understand some of their underlying dynamical features. Several methods have been proposed for the analysis of multivar ...
Bottom-up models of functionally relevant patterns of neural activity provide an explicit link between neuronal dynamics and computation. A prime example of functional activity patterns are propagating bursts of place-cell activities called hippocampal rep ...
Developing energy-saving neural network models is a topic of rapidly increasing interest in the artificial intelligence community. Spiking neural networks (SNNs) are biologically inspired models that strive to leverage the energy efficiency stemming from a ...
Understanding behavior from neural activity is a fundamental goal in neuroscience. It has practical applications in building robust brain-machine interfaces, human-computer interaction, and assisting patients with neurological disabilities. Despite the eve ...
While Spiking Neural Networks (SNNs) have been gaining in popularity, it seems that the algorithms used to train them are not powerful enough to solve the same tasks as those tackled by classical Artificial Neural Networks (ANNs).In this paper, we provide ...
How does reliable computation emerge from networks of noisy neurons? While individual neurons are intrinsically noisy, the collective dynamics of populations of neurons taken as a whole can be almost deterministic, supporting the hypothesis that, in the br ...
In this thesis, we present a data-driven iterative pipeline to generate, simulate and validate point-neuron models of the whole mouse brain. The ultimate goal is to replicate close loop experiments with a virtual body in a virtual world. This pipeline was ...
In this thesis, timing is everything. In the first part, we mean this literally, as we tackle systems that encode information using timing alone. In the second part, we adopt the standard, metaphoric interpretation of this saying and show the importance of ...
To characterize a physical system to behave as desired, either its underlying governing rulesmust be known a priori or the system itself be accurately measured. The complexity of fullmeasurements of the system scales with its size. When exposed to real-wor ...
Can we use spiking neural networks (SNN) as generative models of multi-neuronal recordings, while taking into account that most neurons are unobserved? Modeling the unobserved neurons with large pools of hidden spiking neurons leads to severely underconstr ...