Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Exactitude et précisionvignette|Schéma de l'exactitude et la précision appliquée à des lancers de fléchettes. Dans la mesure d'un ensemble, l'exactitude est la proximité des mesures à une valeur spécifique, tandis que la précision est la proximité des mesures les unes par rapport aux autres. L'exactitude a deux définitions : Plus communément, il s'agit d'une description des erreurs systématiques, une mesure du biais statistique ; une faible précision entraîne une différence entre un résultat et une valeur « vraie ».
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.
Éditeur de code sourceUn éditeur de code source est un programme d'édition de texte spécialement conçu pour l'édition du code source d'un programme informatique . Il peut s'agir d'une application autonome ou intégrée à un environnement de développement intégré (IDE) ou à un navigateur Web. Un éditeur de code source est un outil de programmation fondamental, car le travail fondamental des programmeurs est d'écrire et de modifier le code source.
Génération automatique de textesLa génération automatique de texte (GAT) est une sous discipline de la linguistique computationnelle qui vise à exprimer sous une forme textuelle, syntaxiquement et sémantiquement correcte, une représentation formelle d'un contenu. Outre ses nombreuses applications existantes ou potentielles - par exemple pour produire automatiquement des bulletins météorologiques, ou des rapports automatisés - elle offre par ailleurs un cadre d'investigation des théories linguistiques, et particulièrement de ses mécanismes de production.
Microscope confocalvignette|upright=2|Schéma de principe du microscope confocal par Marvin Minsky en 1957. vignette|upright=1.5|Principe de fonctionnement du microscope à fluorescence puis du microscope confocal. Un microscope confocal, appelé plus rarement microscope monofocal, est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ ) appelées « sections optiques ».
MicroscopieLa microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
Musique classiquethumb|250px|Une vingtaine de compositeurs de musique classique, parmi les plus importants couvrant la période du .(De gauche à droite, de haut en bas : — Antonio Vivaldi, Jean-Sébastien Bach, Georg Friedrich Haendel, Wolfgang Amadeus Mozart, Ludwig van Beethoven — Gioachino Rossini, Felix Mendelssohn, Frédéric Chopin, Richard Wagner, Giuseppe Verdi — Johann Strauss II, Johannes Brahms, Georges Bizet, Piotr Ilitch Tchaïkovski, Antonín Dvořák — Edvard Grieg, Edward Elgar, Sergueï Rachmaninov, George Gershwin, Aram Khatchatourian.
Multi-agent reinforcement learningMulti-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics. Multi-agent reinforcement learning is closely related to game theory and especially repeated games, as well as multi-agent systems.
Compilateur source à sourceUn compilateur source à source, transpileur ou transcompilateur est un type de compilateur qui prend le code source d'un langage de programmation et le compile dans un autre langage de programmation. Un compilateur source-à-source opère sur deux langages avec approximativement le même niveau d'abstraction, alors qu'un compilateur traditionnel compile un langage de haut niveau vers un langage de bas niveau. Un des premiers compilateurs de ce type était le XLT86 de Digital Research en 1981, un programme écrit par Gary Kildall qui compilait du code .