Réseau métallo-organiquevignette|Exemple de MOF avec différents ligands organiques. Les réseaux métallo-organiques (MOF, pour l'anglais metal–organic framework) sont des solides poreux hybrides cristallins constitués d'ions métalliques ou de clusters coordonnés à des ligands organiques pour former des structures en une, deux ou trois dimensions. Les MOF présentent notamment une surface spécifique très élevée du fait de leur structure nanoporeuse. Les MOF sont nommés selon leur lieu de découverte suivi d’un numéro d’incrémentation, par exemple MIL-101 pour Matériaux Institut Lavoisier , ou UiO-66.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Effet Zeemanvignette|Photo de l'effet Zeeman, prise en 1896 par Pieter Zeeman. L’effet Zeeman désigne la séparation d'un niveau atomique d'énergie défini d'un atome ou d'une molécule en plusieurs sous-niveaux d'énergies distinctes, sous l'effet d'un champ magnétique externe. Il y a donc levée de dégénérescence des niveaux énergétiques. L'effet s'observe aisément par spectroscopie : lorsqu'une source de lumière est plongée dans un champ magnétique statique, ses raies spectrales se séparent en plusieurs composantes.
Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).