Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In presence of sparse noise we propose kernel regression for predicting output vectors which are smooth over a given graph. Sparse noise models the training outputs being corrupted either with missing samples or large perturbations. The presence of sparse noise is handled using appropriate use of ℓ 1 -norm along-with use of ℓ2-norm in a convex cost function. For optimization of the cost function, we propose an iteratively reweighted least-squares (IRLS) approach that is suitable for kernel substitution or kernel trick due to availability of a closed form solution. Simulations using real-world temperature data show efficacy of our proposed method, mainly for limited-size training datasets.
, ,
Michele Ceriotti, Alberto Fabrizio, Benjamin André René Meyer, Edgar Albert Engel, Raimon Fabregat I De Aguilar-Amat, Veronika Juraskova
Friedrich Eisenbrand, Puck Elisabeth van Gerwen, Raimon Fabregat I De Aguilar-Amat