Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Optimum de ParetoUn optimum de Pareto est une allocation des ressources sans alternative, c'est-à-dire que tous les agents économiques sont dans une situation telle qu'il est impossible d'améliorer le sort de l'un d'entre eux sans réduire la satisfaction d'un autre. Concept majeur de la microéconomie, il porte le nom de l'économiste italien Vilfredo Pareto, qui l'a utilisé pour décrire un état de la société dans lequel on ne peut pas améliorer le bien-être d’un individu sans détériorer celui d’un autre.
Scenario optimizationThe scenario approach or scenario optimization approach is a technique for obtaining solutions to robust optimization and chance-constrained optimization problems based on a sample of the constraints. It also relates to inductive reasoning in modeling and decision-making. The technique has existed for decades as a heuristic approach and has more recently been given a systematic theoretical foundation. In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem.
Allocative efficiencyAllocative efficiency is a state of the economy in which production is aligned with consumer preferences; in particular, the set of outputs is chosen so as to maximize the wellbeing of society. This is achieved if every good or service is produced up until the last unit provides a marginal benefit to consumers equal to the marginal cost of production. In economics, allocative efficiency entails production at the point on the production possibilities frontier that is optimal for society.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Economic efficiencyIn microeconomics, economic efficiency, depending on the context, is usually one of the following two related concepts: Allocative or Pareto efficiency: any changes made to assist one person would harm another. Productive efficiency: no additional output of one good can be obtained without decreasing the output of another good, and production proceeds at the lowest possible average total cost. These definitions are not equivalent: a market or other economic system may be allocatively but not productively efficient, or productively but not allocatively efficient.
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Expérience de AschL'expérience de Asch, publiée en 1951, est une expérience du psychologue Solomon Asch qui démontre le pouvoir du conformisme sur les décisions d'un individu au sein d'un groupe. Asch invita un groupe d'étudiants (entre 7 et 9) de à participer à un prétendu test de vision auquel avaient auparavant été soumis des sujets témoins qui n'eurent aucun mal à donner toujours la bonne réponse. Tous les participants étaient complices de l'expérimentateur, sauf un.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.