Contrôle moteurEn neurosciences, le contrôle moteur est la capacité de faire des ajustements posturaux dynamiques et de diriger le corps et les membres dans le but de faire un mouvement déterminé. Le mouvement volontaire est initié par le cortex moteur primaire et le cortex prémoteur. Le signal est ensuite transmis aux circuits du tronc cérébral et de la moelle épinière qui activent les muscles squelettiques qui, en se contractant, produisent un mouvement. Le mouvement produit renvoie des informations proprioceptives au système nerveux central (SNC).
Cortex moteurLe cortex moteur désigne l'ensemble des aires du cortex cérébral qui participent à la planification, au contrôle et à l'exécution des mouvements volontaires des muscles du corps. D'un point de vue anatomique, le cortex moteur est situé dans la partie postérieure du lobe frontal, au niveau de la région caudale de la circonvolution frontale ascendante en avant du sillon central. Le cortex moteur est en interaction constante avec d'autres structures nerveuses impliquées dans le mouvement comme le système des ganglions de la base et le cervelet.
Moelle spinaleLa moelle spinale (selon la nouvelle nomenclature), ou moelle épinière (dans l’ancienne nomenclature), désigne la partie du système nerveux central qui prolonge la moelle allongée appartenant au tronc cérébral. Elle est contenue dans le canal rachidien (canal formé par la superposition des foramens vertébraux), qui la soutient et la protège. Elle est constituée de neurones et de cellules gliales. Sa fonction principale est la transmission des messages nerveux entre le cerveau et le reste du corps.
Réseau de neurones (biologie)En neurosciences, un réseau de neurones correspond, schématiquement : Soit à un nombre restreint de différents neurones interconnectés, qui ont une fonction précise, comme le ganglion stomatogastrique qui contrôle l'activité des muscles de l'estomac des crustacés. Soit à un grand nombre de neurones similaires interconnectés, qui ont des fonctions plus cognitives, comme les réseaux corticaux qui permettent entre autres la catégorisation.
Degrees of freedom problemIn neuroscience and motor control , the degrees of freedom problem or motor equivalence problem states that there are multiple ways for humans or animals to perform a movement in order to achieve the same goal. In other words, under normal circumstances, no simple one-to-one correspondence exists between a motor problem (or task) and a motor solution to the problem.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Réseau locomoteur spinalLe réseau locomoteur spinal, ou central pattern generator (CPG) en anglais, est un réseau de neurones localisé dans la moelle spinale responsable de la locomotion. La particularité de ce réseau est qu’il peut fonctionner de manière autonome, indépendamment des commandes descendantes et des retours sensoriels . Après avoir été activé par le cortex moteur ou d'autres régions supraspinales telles que la région mésencéphalique locomotrice (MLR en anglais), ce réseau peut générer à lui seul l’activité locomotrice.
CerveletLe cervelet (du cerebellum, « petit cerveau ») est une structure de l'encéphale des vertébrés qui joue un rôle important dans le contrôle moteur et est impliqué, dans une moindre mesure, dans certaines fonctions cognitives, telles que l'attention, le langage et la régulation des réactions de peur et de plaisir. Le cervelet n'est généralement pas à l'origine du mouvement, il contribue à la coordination et la synchronisation des gestes, et à la précision des mouvements.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.