Réduction catalytique sélectiveLa réduction catalytique sélective (RCS) (en anglais selective catalytic reduction (SCR)), est une technique utilisée pour réduire les oxydes d'azote (NO) émis soit par des moteurs à combustion interne, soit par des installations industrielles de combustion : gaz, charbon et pétrole. Cette technologie est également utilisée pour réduire les émissions de NO de chaufferies biomasse ou d'incinérateurs de déchets non dangereux.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Réduction non catalytique sélectiveLa réduction non catalytique sélective est une méthode de réduction des émissions d'oxydes d'azote dans les gaz de combustion ou d'incinération. Elle consiste à injecter un agent réducteur azoté pour réduire les NOx en diazote. Cette méthode traitement des fumées, comme la réduction catalytique sélective, fait partie des meilleures technologies disponibles validées par la Communauté Européenne pour la réduction des émissions de polluants pour l'incinération de déchets et pour les grandes installations de combustion.
Diffusion RamanLa diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut modifier légèrement la fréquence de la lumière qui y circule. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu. Cet effet physique fut prédit par Adolf Smekal en 1923.
Pot catalytiqueLe pot catalytique ou catalyseur est un élément de l'ensemble du pot d'échappement des moteurs à combustion interne qui vise à réduire la nocivité des gaz d'échappement. thumb|Vue « en écorché » d'un pot catalytique à enveloppe en inox.Dès la toute fin du , alors que seulement quelques milliers de voitures « à pétrole » sont en circulation, sont conçus en France des premiers prototypes de pots catalytiques automobiles, constitués d'une matière inerte « de contact » imprégnée de platine, d'iridium et de palladium, enfermée dans un cylindre métallique à double paroi isolante traversé de part en part par les gaz d'échappement.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
AUS 32L' () est une solution aqueuse d'urée composée de 32,5 % d'urée et de 67,5 % d'eau déminéralisée. Elle est utilisée dans le processus de réduction catalytique sélective (SCR). C'est un fluide d'échappement diesel (FED) (en anglais en, DEF), aussi appelé AdBlue (marque déposée). L' est standardisée selon la norme ISO 22241. Les poids lourds construits à partir d' sont équipés d'un système qui utilise l'. L' est synthétisée à partir d'ammoniac et de dioxyde de carbone : 2NH3 + → CO(NH2)2 + L' permet de convertir 85 % (voire 90 %) des oxydes d'azote contenus dans les gaz d'échappement, en diazote et vapeur d'eau.
Optical heterodyne detectionOptical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.
Homodyne detectionIn electrical engineering, homodyne detection is a method of extracting information encoded as modulation of the phase and/or frequency of an oscillating signal, by comparing that signal with a standard oscillation that would be identical to the signal if it carried null information. "Homodyne" signifies a single frequency, in contrast to the dual frequencies employed in heterodyne detection. When applied to processing of the reflected signal in remote sensing for topography, homodyne detection lacks the ability of heterodyne detection to determine the size of a static discontinuity in elevation between two locations.
Fumée de Dieselvignette|250px| Locomotive diesel Class 55 Deltic avec son panache de fumée dense visible au-dessus de l'échappement au moment du démarrage du train La fumée de Diesel est un gaz produit par un type de moteur à combustion interne fonctionnant au diesel, cela inclut également les particules émises. Sa composition peut varier avec le type de fuel, le taux de consommation ou la vitesse de fonctionnement des moteurs (c’est-à-dire, tournant au ralenti, à grande vitesse ou sous la charge minimale du moteur), et si le moteur est dans un véhicule routier, un engin agricole, une locomotive, un navire, un générateur fixe ou une autre utilisation du moteur.