Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis, we treat robust estimation for the parameters of the Ornstein–Uhlenbeck process, which are the mean, the variance, and the friction. We start by considering classical maximum likelihood estimation. For the simulation study, where we also in ...
This thesis addresses statistical inference for the resolution of inverse problems. Our work is motivated by the recent trend whereby classical linear methods are being replaced by nonlinear alternatives that rely on the sparsity of naturally occurring sig ...
In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for sto ...
Solving a linear inverse problem may include difficulties such as the presence of outliers and a mixing matrix with a large condition number. In such cases a regularized robust estimator is needed. We propose a new tau-type regularized robust estimator tha ...
One of the challenges of using brain-computer interfaces (BCIs) over extended periods of time is the variation of the users' performance across different experimental days. The goal of the current study is to propose a performance estimator for an electroe ...
Institute of Electrical and Electronics Engineers2016
We develop tractable semidefinite programming based approximations for distributionally robust individual and joint chance constraints, assuming that only the first- and second-order moments as well as the support of the uncertain parameters are given. It ...
This paper proposes a tradeoff between computational time, sample complexity, and statistical accuracy that applies to statistical estimators based on convex optimization. When we have a large amount of data, we can exploit excess samples to decrease stati ...
We study a phase retrieval problem in the Poisson noise model. Motivated by the PhaseLift approach, we approximate the maximum-likelihood estimator by solving a convex program with a nuclear norm constraint. While the Frank-Wolfe algorithm, together with t ...
The spectral measure plays a key role in the statistical modeling of multivariate extremes. Estimation of the spectral measure is a complex issue, given the need to obey a certain moment condition. We propose a Euclidean likelihood-based estimator for the ...
Taylor & Francis Inc2013
, , ,
We consider the reconstruction of multi-dimensional signals from noisy samples. The problem is formulated within the framework of the theory of continuous-domain sparse stochastic processes. In particular, we study the fractional Laplacian as the whitening ...