Fast and Provable ADMM for Learning with Generative Priors
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
We consider the Gaussian N-relay diamond network, where a source wants to communicate to a destination through a layer of N-relay nodes. We investigate the following question: What fraction of the capacity can we maintain by using only k out of the $ ...
Recently, Kannan et al. [2018] proposed several logit regularization methods to improve the adversarial robustness of classifiers. We show that the computationally fast methods they propose - Clean Logit Pairing (CLP) and Logit Squeezing (LSQ) - just make ...
The goal of the scene labeling task is to assign a class label to each pixel in an image. To ensure a good visual coherence and a high class accu- racy, it is essential for a model to capture long range (pixel) label dependencies in images. In a feed-forwa ...
The Generative Adversarial Networks (GANs) have demonstrated impressive performance for data synthesis, and are now used in a wide range of computer vision tasks. In spite of this success, they gained a reputation for being difficult to train, what results ...
Data augmentation is the process of generating samples by transforming training data, with the target of improving the accuracy and robustness of classifiers. In this paper, we propose a new automatic and adaptive algorithm for choosing the transformations ...
We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth imag ...
Artificial neural networks represent a simple but efficient way to model and correct known errors existing between commonly used density functional computations and experimental data. The recently proposed X1 approach combines B3LYP energies with a neural- ...