Publication

Logit Pairing Methods Can Fool Gradient-Based Attacks

Résumé

Recently, Kannan et al. [2018] proposed several logit regularization methods to improve the adversarial robustness of classifiers. We show that the computationally fast methods they propose - Clean Logit Pairing (CLP) and Logit Squeezing (LSQ) - just make the gradient-based optimization problem of crafting adversarial examples harder without providing actual robustness. We find that Adversarial Logit Pairing (ALP) may indeed provide robustness against adversarial examples, especially when combined with adversarial training, and we examine it in a variety of settings. However, the increase in adversarial accuracy is much smaller than previously claimed. Finally, our results suggest that the evaluation against an iterative PGD attack relies heavily on the parameters used and may result in false conclusions regarding robustness of a model.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.