NeutronLe neutron est une particule subatomique de charge électrique nulle. Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de protons d'un noyau détermine son élément chimique, le nombre de neutrons détermine son isotope. Les neutrons liés dans un noyau atomique sont en général stables mais les neutrons libres sont instables : ils se désintègrent en un peu moins de 15 minutes (880,3 secondes). Les neutrons libres sont produits dans les opérations de fission et de fusion nucléaires.
Étoile à neutronsthumb|300px|RX J1856.5-3754, une étoile à neutrons isolée proche du Système solaire, dont l'émission de surface est vue par le télescope spatial Hubble. Une étoile à neutrons est un astre principalement composé de neutrons maintenus ensemble par les forces de gravitation. De tels objets sont le résidu compact issu de l'effondrement gravitationnel du cœur de certaines étoiles massives lorsque celles-ci ont épuisé leur combustible nucléaire. Une étoile à neutrons peut présenter différents aspects.
Détection de neutronsvignette|Structure des quarks neutroniques (forme annulaire) La détection de neutrons est la détection effective de neutrons entrant dans un détecteur. Il existe deux aspects de la détection effective de neutrons : l'aspect matériel (hardware) et l'aspect logiciel (software). Le matériel de détection désigne le genre de détecteur utilisé (le plus souvent, un détecteur à scintillation) et l'électronique qui y est liée. D'autre part, le montage du matériel définit aussi les paramètres expérimentaux, tels que la distance entre source et détecteur ou l'angle solide du détecteur.
Tokamakthumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite. Un tokamak est un dispositif de confinement magnétique expérimental explorant la physique des plasmas et les possibilités de produire de l'énergie par fusion nucléaire. Il existe deux types de tokamaks aux caractéristiques sensiblement différentes, les tokamaks traditionnels toriques (objet de cet article) et les tokamaks sphériques.
Température neutroniquevignette|400px|Graphique des fonctions de densité de probabilité de vitesse de la vitesse de quelques gaz nobles à une température de (). Des distributions de vitesse similaires sont obtenues pour des neutrons modérés. La température neutronique, aussi appelée par métonymie « énergie des neutrons », est l'énergie cinétique moyenne d'un neutron libre dans sa population, énergie qui est habituellement donnée en électron-volts (abréviation eV et ses multiples, keV, MeV), la température étant en kelvins (K) ou en degrés Celsius (°C).
Découverte du neutronvignette| James Chadwick à la Conférence Solvay de 1933. Chadwick avait découvert le neutron l'année précédente alors qu'il travaillait au laboratoire Cavendish. La découverte du neutron et de ses propriétés a été au cœur des développements spectaculaires de la physique atomique dans la première moitié du XXe siècle. Au début du siècle, Ernest Rutherford avait développé un modèle rudimentaire de l'atome, à la suite des résultats de l'expérience de la feuille d'or qu'avaient menée ses deux assistants Hans Geiger et Ernest Marsden.
Fusion par confinement magnétiqueLa fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Générateur de neutronsvignette|Un physicien nucléaire de l'INL se prépare à réaliser une expérience à l'aide d'un générateur de neutrons. Un générateur de neutrons est une machine source de neutrons, permettant de produire un faisceau de neutrons monoénergétiques. Il se distingue des sources isotopiques de neutrons par sa capacité à produire des neutrons « à la demande » dans diverses configurations : faisceaux pulsés, énergies différentes Les générateurs de neutrons sont principalement utilisés comme amorces dans les armes nucléaires et servent également à analyser la matière par les différents rayonnements induits par les neutrons lorsqu'ils rencontrent des atomes (prospection minière, détection d'explosifs.
Énergie de fusion nucléairevignette| L'expérience de fusion magnétique du Joint European Torus (JET) en 1991. L'énergie de fusion nucléaire est une forme de production d'électricité du futur qui utilise la chaleur produite par des réactions de fusion nucléaire. Dans un processus de fusion, deux noyaux atomiques légers se combinent pour former un noyau plus lourd, tout en libérant de l'énergie. De telles réactions se produisent en permanence au sein des étoiles. Les dispositifs conçus pour exploiter cette énergie sont connus sous le nom de réacteurs à fusion nucléaire.
Neutron cross sectionIn nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of target nuclei. In conjunction with the neutron flux, it enables the calculation of the reaction rate, for example to derive the thermal power of a nuclear power plant.