Énergie (physique)En physique, l'énergie est une grandeur qui mesure la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur. Dans le Système international d'unités (SI), l'énergie s'exprime en joules et est de dimension . Le mot français vient du latin vulgaire energia, lui-même issu du grec ancien / enérgeia. Ce terme grec originel signifie « force en action », par opposition à / dýnamis signifiant « force en puissance » ; Aristote a utilisé ce terme , pour désigner la réalité effective en opposition à la réalité possible.
Nuclear cross sectionThe nuclear cross section of a nucleus is used to describe the probability that a nuclear reaction will occur. The concept of a nuclear cross section can be quantified physically in terms of "characteristic area" where a larger area means a larger probability of interaction. The standard unit for measuring a nuclear cross section (denoted as σ) is the barn, which is equal to e-28m2, e-24cm2 or 100fm2.
Flux neutroniqueUn flux neutronique désigne une densité volumique de neutrons ayant la même vitesse, multipliée par cette vitesse : Φ = n • v . Il caractérise l'interactivité de la population des neutrons en déplacement avec les atomes du milieu. Une population de densité n / 2 se déplaçant à la vitesse v aura la même interactivité avec les atomes du milieu qu'une population de densité n allant à la vitesse v / 2. Il se mesure en . L'unité pratique est le neutron par centimètre carré et par seconde, .
Activation neutroniqueL’activation neutronique est le processus par lequel un flux neutronique induit de la radioactivité dans les matériaux qu'il traverse (phénomène de radioactivation). Tout matériau traversé par un flux de neutrons subit progressivement une transmutation par capture neutronique qui rend une partie de ses noyaux radioactifs, et la durée de vie de cette radioactivité impose généralement de le gérer par la suite comme déchet radioactif (le plus souvent comme déchet de faible activité).
Propulsion électrique (spatial)La propulsion électrique dans le domaine spatial est un type de propulsion à réaction dans lequel l'électricité est utilisée comme source d'énergie pour accélérer un fluide. Contrairement à la propulsion chimique, ce type de propulsion spatiale ne fournit pas des poussées suffisamment importantes (poussées inférieures à , soit ) pour placer en orbite des satellites artificiels mais, grâce à une impulsion spécifique très élevée, elle permet de réduire de manière très importante (jusqu'à dix fois) la masse d'ergols nécessaire pour manœuvrer un engin dans l'espace par rapport aux autres types de propulsion.
Hélium 4L’hélium 4, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 4 : son noyau atomique compte deux protons et deux neutrons pour une masse atomique de et un spin 0+. Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Son rayon de charge a pu être estimé expérimentalement à . En physique nucléaire, le noyau d' est souvent appelé particule α. Sur Terre, l'hélium 4 provient de la radioactivité α des éléments lourds présents dans la planète depuis sa formation.
Fusion aneutroniqueLa fusion aneutronique est une réaction de fusion nucléaire au cours de laquelle la proportion d’énergie libérée sous forme de neutrons reste minime, typiquement inférieure au seuil d’1 % de l’énergie totale. Les réactions nucléaires généralement étudiées aujourd’hui peuvent libérer jusqu’à 80 % de leur énergie sous forme de neutrons. À l’inverse, à condition qu’elle puisse être maîtrisée, la fusion aneutronique serait à même de réduire considérablement les inconvénients associés au rayonnement neutronique (rayonnements ionisants, activation), le besoin d’écrans de protection ou d’équipements de télémanipulation et les problèmes de sûreté.
Modérateur (nucléaire)Placé au cœur d'un réacteur nucléaire, le modérateur est la substance qui ralentit les neutrons sans les absorber, permettant ainsi une réaction nucléaire en chaîne efficace. L'élément retenu pour concevoir le modérateur d'un réacteur nucléaire est le plus souvent soit : de l'hydrogène : réacteur à eau légère ; du deutérium : réacteur à eau lourde ; ou du carbone : réacteur au graphite. Le principe de ralentissement des neutrons est théorisé par le concept de thermalisation des neutrons et est utilisé dans les réacteurs à neutrons thermiques.
Eau lourdeL'eau lourde ou oxyde de deutérium DO (ou HO) est constituée des mêmes éléments chimiques que l'eau ordinaire (ou HO), mais ses atomes d'hydrogène sont des isotopes lourds, du deutérium (le noyau de deutérium comporte un neutron en plus du proton présent dans tout atome d’hydrogène). C'est Gilbert Lewis qui isola le premier échantillon d'eau lourde pure, en 1933. L'eau semi-lourde, ou eau deutérée, est l'oxyde mixte HDO (ou HHO). Dans les océans, les mers et les eaux de surface, elle est bien plus abondante que l'eau lourde.
Économies d'énergieLes économies d'énergie sont les gains obtenus en réduisant la consommation d'énergie ou les pertes sur l'énergie produite. Les économies d'énergie sont devenues un objectif important des pays fortement consommateurs d'énergie vers la fin du , notamment après le choc pétrolier de 1973 puis à partir des années 1990, afin de répondre à plusieurs inquiétudes : la crainte d'un épuisement des ressources naturelles, particulièrement des combustibles fossiles ; le réchauffement climatique résultant des émissions de gaz à effet de serre ; les problèmes politiques et de sécurité d'approvisionnement dus à l'inégale répartition des ressources sur la planète ; le coût de l'énergie que la combinaison de ces phénomènes peut faire augmenter.