Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
For studying spectral properties of a non-normal matrix A ∈ Cn×n, information about its spectrum σ(A) alone is usually not enough. Effects of perturbations on σ(A) can be studied by computing ε-pseudospectra, that is the level-sets of the resolvent norm function g(z) = ‖(zI − A)−1‖2. The computation of ε-pseudospectra requires determining the smallest singular values σmin(zI − A) on for all z on a portion of the complex plane. In this work, we propose a reduced basis approach to pseudospectra computation that provides highly accurate estimates of pseudospectra in the region of interest. It incorporates the sampled singular vectors of zI − A for different values of z and implicitly exploits their smoothness properties. It provides rigorous upper and lower bounds for the pseudospectra in the region of interest. We also present a comparison of our approach to several existing approaches on a number of numerical examples, showing that our approach provides significant improvement in terms of computational time.
Florent Gérard Krzakala, Alia Abbara