In mathematics, a complex square matrix A is normal if it commutes with its conjugate transpose A^: The concept of normal matrices can be extended to normal operators on infinite dimensional normed spaces and to normal elements in C-algebras. As in the matrix case, normality means commutativity is preserved, to the extent possible, in the noncommutative setting. This makes normal operators, and normal elements of C*-algebras, more amenable to analysis. The spectral theorem states that a matrix is normal if and only if it is unitarily similar to a diagonal matrix, and therefore any matrix A satisfying the equation AA = AA is diagonalizable. The converse does not hold because diagonalizable matrices may have non-orthogonal eigenspaces. The left and right singular vectors in the singular value decomposition of a normal matrix differ only in complex phase from each other and from the corresponding eigenvectors, since the phase must be factored out of the eigenvalues to form singular values. Among complex matrices, all unitary, Hermitian, and skew-Hermitian matrices are normal, with all eigenvalues being unit modulus, real, and imaginary, respectively. Likewise, among real matrices, all orthogonal, symmetric, and skew-symmetric matrices are normal, with all eigenvalues being complex conjugate pairs on the unit circle, real, and imaginary, respectively. However, it is not the case that all normal matrices are either unitary or (skew-)Hermitian, as their eigenvalues can be any complex number, in general. For example, is neither unitary, Hermitian, nor skew-Hermitian, because its eigenvalues are ; yet it is normal because The concept of normality is important because normal matrices are precisely those to which the spectral theorem applies: The diagonal entries of Λ are the eigenvalues of A, and the columns of U are the eigenvectors of A. The matching eigenvalues in Λ come in the same order as the eigenvectors are ordered as columns of U.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (21)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-115(a): Advanced linear algebra II - diagonalization
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
Afficher plus
Publications associées (32)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.