Publication

Magnetic and structural properties of Ni-substituted magnetoelectric Co4Nb2O9

Résumé

The magnetic and structural properties of polycrystalline Co4-xNixNb2O9 (x = 1, 2) have been investigated by neutron powder diffraction, magnetization and heat capacity measurements, and density functional theory (DFT) calculations. For x = 1, the compound crystallizes in the trigonal P (3) over bar c1 space group. Below T-N = 31 K it develops a weakly noncollinear antiferromagnetic structure with magnetic moments in the ab plane. The compound with x = 2 has crystal structure of the orthorhombic Pbcn space group and shows a hard ferrimagnetic behavior below T-C = 47 K. For this compound a weakly noncollinear ferrimagnetic structure with two possible configurations in the ab plane was derived from neutron diffraction study. By calculating magnetic anisotropy energy via DFT, the ground-state magnetic configuration was determined for this compound. The heat capacity study in magnetic fields up to 140 kOe provides further information on the magnetic structure of the compounds.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Moment magnétique
En physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Magnetic domain
A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions.
Dipôle magnétique
vignette|Dipôle magnétique de la Terre Un dipôle magnétique est l'équivalent pour le champ magnétique de ce qu'est un dipôle électrostatique pour le champ électrique. Il est entièrement caractérisé par le vecteur moment magnétique (ou moment dipolaire magnétique), l'équivalent pour le magnétisme de ce qu'est le moment dipolaire pour l'électrostatique. La représentation matérielle la plus simple d'un dipôle magnétique est une boucle de courant, c'est-à-dire un courant électrique circulaire.
Afficher plus
Publications associées (257)

Magnetic structure and magnetoelectric properties of the spin-flop phase in LiFePO4

Ellen Fogh, Paola Caterina Forino, Sofie Janas

We investigate the magnetic structure and magnetoelectric(ME) effect in the high -field phase of the antiferromagnet LiFePO 4 above the critical field of 31 T. A neutron diffraction study in pulsed magnetic fields reveals the propagation vector to be q = 0 ...
Amer Physical Soc2024

Magnetic structure of the two-dimensional XY antiferromagnet Sr2CoSi2O7 studied using single-crystal neutron diffraction

Bálint Náfrádi

We report a combined polarized and unpolarized neutron diffraction study on a multiferroic Sr2CoSi2O7 (SCSO) single crystal below and above the antiferromagnetic ordering temperature TN = 6.5 K. Unpolarized neutron diffraction measurements at 15 K confirm ...
AMER PHYSICAL SOC2023
Afficher plus
MOOCs associés (32)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.