Publication

Supplementary Material - AL2: Progressive Activation Loss for Learning General Representations in Classification Neural Networks

Sabine Süsstrunk, Majed El Helou, Frederike Dümbgen
2020
Rapport ou document de travail
Résumé

In this supplementary material, we present the details of the neural network architecture and training settings used in all our experiments. This holds for all experiments presented in the main paper as well as in this supplementary material. We also show the summary results of all of our 96 experiments (test accuracy, training cross-entropy loss, and regularization loss), sampled at 100 epoch intervals. We analyze these results for each of the benchmark datasets, namely MNIST, Fashion-MNIST and CIFAR10, and underline global observations we make throughout the entire experiment set.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.